【p. 9~13】

汝自身を知れ(γνῶθι σεαυτόν)
山田 格

藤田尚男. 1989. 人体解剖のルネサンス. 平凡社: 東京.

Hooke R. 1665. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. Jo. Martyn and Ja. Allestry: London.

Malpighi M. 1661. De pulmonibus observationes anatomicæ. Marcellus Malpighius.

Minois G. 2015. Le prêtre et le médecin : des saints guérisseurs à la bioéthique. CNRS éditions: Paris.

Robertson L, Backer J, Biemans C, van Doorn J, Krab K, Reijnders W, Smit H, Willemsen P. 2016. Antoni van Leeuwenhoek, Master of the Minuscule. Brill: Neiden.

【p. 44~45】

ブールハーフェ博物館とレーウェンフックの顕微鏡 ハンス・ホーイマイヤース

Anderson D. 2014. Still Going Strong: Leeuwenhoek at Eighty, Antonie van Leeuwenhoek. Journal of Microbiology 106: 3-26.

Ford BJ. 1985. Single Lens: The story of the simple microscope. HarperCollins.

Ford BJ. 1991. The Leeuwenhoek Legacy. Lubrecht & Cramer Ltd.

Huib Zuidervaart, Anderson D. 2016. Anthony van Leeuwenhoek´s microscopes and other scientific instruments. Annals of science 73: 257-288.

Mass A. 2013. How to put a black box in a showcase: History of science museums and recent heritage. Studies in history and philosophy of science 44: 660-668.

Mass A. 2017. History of Science Museums between Academics and Audiences. Isis: a journal of the history of science society 108: 360-406.

Otterspeer W. 2006. 75 jaar Museum Boerhaave.

Tiemen Cocquyt. 2016. The identification of a silver microscope of Antoni van Leeuwenhoek (1632-1723). Bulletin of the Scientific Instrument Society 130: 30-38.

【p. 128~129】

オズボーン・オーヴァートン・ハードと連続切片からの三次元復構 カレン・ウェルナー

Buklijaz T, Hopwood. N. 2010. Making Visible Embryos. http://www.sites.hps.cam.ac.uk/visibleembryos/

Heard OO. 1931. A Photographic Method of Orienting Serial Sections for Reconstruction. Anat Rec 49: 59–70.

Heard OO. 1946. Microtomy with a Reciprocating Circular Knife and a Mechanism for Sharpening the Knife. Review of Scientific Instruments 17: 227-232.

Heard OO. 1953. The influence of surface forces in microtomy. Anat Rec 117: 725-739.

Heard OO. 1978. Interview with A. Berry. Washington, D.C.: Human Developmental Anatomy Center, National Museum of Health and Medicine, Armed Forces Institute of Pathology.

Heuser CH, Heard OO. 1942. A Vertical Stereocamera for Biological Photography. Journal of the Biological Photography Association 11: 5-12.

Lewis WH. 1915. The Use of Guide Planes and Plaster of Paris for Reconstructions from Serial Sections: Some Points on Reconstruction. Anat Rec 9: 719-729.

【p. 160~167】

人体を読む――自律神経のマクロ解剖学を例として 佐藤達夫

1) 奥野大三郎(訳). 2013. ファーブル昆虫記 2 狩りをするハチ. p59-95. 集英社, 東京.

2) 佐藤達夫. 2010. 自律神経系のマクロ解剖学. 現代鍼灸学. 10:71-87.

3) Hirschfeld L & Leveille JB. 1853. Nevrologie ou Description et Iconographie du Systeme Nerveux et des Organs des Sens de l’Homme. Bailliere, Paris. 367pp.

4) Müller LR. 1931. Lebensnerven und Lebenstriebe. 3rd ed. Julius Springer, Berlin. 991pp.

5) Langley JN. 1921. The Autonomic Nervous System. Part 1. W. Heffer & Sons, Cambridge. 80pp. (馬場正六訳・馬場正男校閲. 1962. 自律神経系. p10. 医歯薬出版, 東京. による)

6) 藤田恒夫. 2003. 入門人体解剖学. 改訂4版. p266. 南江堂, 東京.

7) Romer AS. 1966. The Vertebrate Body. 3rd ed. p521. Saunders, Philadelphia-London.

8) Woodburn RT. 1978. Essentials of Human Anatomy. 6th ed. p343, 404. Oxford University Press, New York-London-Toronto.

9) 佐藤達夫. 2008. 胸部の地図帳. p57. 講談社, 東京.

10) 佐藤達夫. 1993. 消化器の局所解剖―食道・胃. p271, 282. 金原出版, 東京.

11) Gaskell WH. 1916. The Involuntary Nervous System. p25. Longmans, London.

12) Toldt C. 1900. Anatomischer Atlas. Neurologia. p146. Urban & Schwarzenberg, Berlin-Wien.

【p. 169~171】

顕微鏡が変えた世界の見方――人体の内と外をめぐって 田中祐理子

1) Wedderburn, J., Quator problematum quae Martinus Horky contra Nuntium Sidereum de quatuor planetis novis disputanda prosuit. Confutatio per Jannem Vuodderbornium Scotobritannum, Padua, 1610. cited in Il microscopio di Galileo : Antologia, Istituo e Museo di Storia della Scienza. https://brunelleschi.imss.fi.it/esplora/microscopio/dswmedia/risorse/antologia.pdf (accessed January 15, 2018)

2) Lettera di Giovanni Faber a Federico Cesi, Roma, 11 maggio 1624, in G. Galilei, Opere, ed. nazionale a cura di A. Favaro, Firenze 1968, vol. XIII, pp. 177-178. cited in Il microscopio di Galileo : Antologia, Istituo e Museo di Storia della Scienza. https://brunelleschi.imss.fi.it/esplora/microscopio/dswmedia/risorse/antologia.pdf (accessed January 15, 2018)

3) 橋本毅彦, 『図説科学史入門』, ちくま新書, 2016.

4) Koyré, A., From the Closed World to the Infinite Universe, Baltimore, Johns Hopkins Press, 1957.(コイレ, 『コスモスの崩壊――閉ざされた世界から無限の世界へ』[新装復刊版], 野沢協訳, 白水社, 1999)

5) Wilson, C., The Invisible World: Early Modern Philosophy and the Invention of the Microscope, Princeton, New Jersey, Priceton University Press, 1995.

6) Mattern, S. P., The Prince of Medicine: Galen in the Roman Empire, Oxford, Oxford University Press, 2013. (マターン, 『ガレノス―西洋医学を支配したローマ帝国の医師』, 澤井直訳, 白水社, 2017)

7) 坂井建生, 『人体観の歴史』, 岩波書店, 2008.

8) Hooke, R., Micrographia; or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon, Charleston, BiblioBazaar, 2007 [London, 1665].

9) Alle de brieven van Antoni van Leeuwenhoek/ The Collected Letters of Antoni van Leeuwenhoek, vol. 1-16, Amsterdam, Swets & Zetilinger, 1939-2014.

10) 田中祐理子, 『科学と表象―「病原菌」の歴史』, 2013.

11) Harris, H., The Birth of the Cell, London, Yale University Press, 1999. (ハリス, 『細胞の誕生―生命の「基」発見と展開―』, 荒木文枝訳, ニュートン・プレス, 2000)

【p. 172~176】

ヒトの脳は何が特別なのか? 吉永玲史,仲嶋一範

1) Brosnan SF, De Waal FB. 2003. Monkeys reject unequal pay. Nature 425: 297-299.

2) Scharff C, Friederici AD, Petrides M. 2013. Neurobiology of human language and its evolution: primate and non-primate perspectives. Front Evol Neurosci 5: 1.

3) Striedter GF, Northcutt RG. 1991. Biological hierarchies and the concept of homology. Brain Behav Evol 38: 177-189.

4) Northcutt RG, Kaas JH. 1995. The emergence and evolution of mammalian neocortex. Trends Neurosci 18: 373-379.


6) Bruce LL, Neary TJ. 1995. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46: 224-234.

7) Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL. 2000. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424: 409-438.

8) Karten HJ. 2013. Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol 23: R12-15.

9) Molnar Z, Butler AB. 2002. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24: 530-541.

10) Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G, Whitney O, Jarvis SC, Jarvis ER, Kubikova L, Puck AE, Siang-Bakshi C, Martin S, McElroy M, Hara E, Howard J, Pfenning A, Mouritsen H, Chen CC, Wada K. 2013. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol 521: 3614-3665.

11) Chen CC, Winkler CM, Pfenning AR, Jarvis ED. 2013. Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J Comp Neurol 521: 3666-3701.

12) Montiel JF, Vasistha NA, Garcia-Moreno F, Molnar Z. 2016. From sauropsids to mammals and back: New approaches to comparative cortical development. J Comp Neurol 524: 630-645.

13) Medina L, Reiner A. 2000. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23: 1-12.

14) Dugas-Ford J, Rowell JJ, Ragsdale CW. 2012. Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci U S A 109: 16974-16979.

15) Jerison HJ. 1955. Brain to body ratios and the evolution of intelligence. Science 121: 447-449.

16) van Dongen PAM. 1998.

17) Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513: 532-541.

18) Kaas JH. 2007. Evolution of nervous systems: a comprehensive reference.

19) Haug H. 1987. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180: 126-142.

20) Semendeferi K, Damasio H, Frank R, Van Hoesen GW. 1997. The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32: 375-388.

21) Schoenemann PT, Sheehan MJ, Glotzer LD. 2005. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8: 242-252.

22) Barton RA, Venditti C. 2013. Human frontal lobes are not relatively large. Proc Natl Acad Sci U S A 110: 9001-9006.

23) Gabi M, Neves K, Masseron C, Ribeiro PF, Ventura-Antunes L, Torres L, Mota B, Kaas JH, Herculano-Houzel S. 2016. No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc Natl Acad Sci U S A 113: 9617-9622.

24) Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D. 2010. Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107: 13135-13140.

25) Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR. 2017. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358: 1318-1323.

26) Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. 2013. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33: 7368-7383.

27) Bystron I, Rakic P, Molnar Z, Blakemore C. 2006. The first neurons of the human cerebral cortex. Nat Neurosci 9: 880-886.

28) Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL. 2001. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4: 143-150.

29) Marin-Padilla M. 1971. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134: 117-145.

30) Miyata T, Kawaguchi A, Okano H, Ogawa M. 2001. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31: 727-741.

31) Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. 2001. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714-720.

32) Tabata H, Nakajima K. 2003. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23: 9996-10001.

33) Rakic P, Sidman RL. 1969. Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129: 53-82.

34) Tabata H, Kanatani S, Nakajima K. 2009. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19: 2092-2105.

35) Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K. 2011. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent "inside-out" lamination in the neocortex. J Neurosci 31: 9426-9439.

36) Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, Hattori M, Kinashi T, Nakajima K. 2012. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron 76: 353-369.

37) Angevine JB, Jr., Sidman RL. 1961. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192: 766-768.

38) Tsai HM, Garber BB, Larramendi LM. 1981. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ. J Comp Neurol 198: 275-292.

39) Takahashi T, Nowakowski RS, Caviness VS, Jr. 1996. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16: 6183-6196.

40) Caviness VS, Jr., Takahashi T, Nowakowski RS. 1995. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18: 379-383.

41) Bayer SAA, J. 1991. Neocortical development. Raven Press New York.

42) Jay B. Angevine Jr., David Bodian, Alfred J. Coulombre, Mac V. Edds Jr., Viktor Hamburger, Marcus Jacobson, Katherine M. Lyser, Martin C. Prestige, Richard L. Sidman, Silvio Varon, Weiss PA. 1970. Embryonic vertebrate central nervous system: revised terminology. The Boulder Committee. Anat Rec 166: 257-261.

43) Haubensak W, Attardo A, Denk W, Huttner WB. 2004. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101: 3196-3201.

44) Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. 2004. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7: 136-144.

45) Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. 2004. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131: 3133-3145.

46) Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF. 2009. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex 19: 2439-2450.

47) Vasistha NA, Garcia-Moreno F, Arora S, Cheung AF, Arnold SJ, Robertson EJ, Molnar Z. 2015. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex 25: 3290-3302.

48) Hansen DV, Lui JH, Parker PR, Kriegstein AR. 2010. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464: 554-561.

49) Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB. 2010. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13: 690-699.

50) Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. 2002. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12: 37-53.

51) Ostrem BE, Lui JH, Gertz CC, Kriegstein AR. 2014. Control of outer radial glial stem cell mitosis in the human brain. Cell Rep 8: 656-664.

52) Nowakowski TJ, Pollen AA, Sandoval-Espinosa C, Kriegstein AR. 2016. Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron 91: 1219-1227.

53) Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Menard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C. 2013. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80: 442-457.

54) Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V. 2011. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21: 1674-1694.

55) Toda T, Shinmyo Y, Dinh Duong TA, Masuda K, Kawasaki H. 2016. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci Rep 6: 29578.

56) Shitamukai A, Konno D, Matsuzaki F. 2011. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31: 3683-3695.

57) Wang X, Tsai JW, LaMonica B, Kriegstein AR. 2011. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14: 555-561.

58) Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K. 2011. Neuron number and size in prefrontal cortex of children with autism. JAMA 306: 2001-2010.

59) Barton RA, Harvey PH. 2000. Mosaic evolution of brain structure in mammals. Nature 405: 1055-1058.

60) MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR. 2003. Expansion of the neocerebellum in Hominoidea. J Hum Evol 44: 401-429.

61) Kelly RM, Strick PL. 2003. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23: 8432-8444.

62) Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, Ramnani N. 2010. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage 49: 2045-2052.

63) Marin-Padilla M. 1992. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321: 223-240.

64) Marin-Padilla M. 2014. The mammalian neocortex new pyramidal neuron: a new conception. Front Neuroanat 7: 51.

65) Sakai T, Mikami A, Suzuki J, Miyabe-Nishiwaki T, Matsui M, Tomonaga M, Hamada Y, Matsuzawa T, Okano H, Oishi K. 2017. Developmental trajectory of the corpus callosum from infancy to the juvenile stage: Comparative MRI between chimpanzees and humans. PLoS One 12: e0179624.

66) Gannon PJ, Holloway RL, Broadfield DC, Braun AR. 1998. Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke's brain language area homolog. Science 279: 220-222.

67) Gannon PJ, Kheck NM, Braun AR, Holloway RL. 2005. Planum parietale of chimpanzees and orangutans: a comparative resonance of human-like planum temporale asymmetry. Anat Rec A Discov Mol Cell Evol Biol 287: 1128-1141.

68) Hopkins WD, Marino L, Rilling JK, MacGregor LA. 1998. Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). Neuroreport 9: 2913-2918.

69) Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE. 2008. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11: 426-428.

70) Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM. 2011. Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3: 11.

71) Uylings HB, Groenewegen HJ, Kolb B. 2003. Do rats have a prefrontal cortex? Behav Brain Res 146: 3-17.

72) Elston GN, Elston A, Freire MAM, Gomes Leal W, Dias IA, Pereira A, Jr., Silveira LCL, Picanco Diniz CW. 2006. Specialization of pyramidal cell structure in the visual areas V1, V2 and V3 of the South American rodent, Dasyprocta primnolopha. Brain Res 1106: 99-110.

73) Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J. 2011. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21: 1485-1497.

74) Kaas JH. 1989. Why does the brain have so many visual areas? J Cogn Neurosci 1: 121-135.

75) Kaas JH. 2013. The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4: 33-45.

76) Economo Cv. 1926. Eine neue art spezialzellen des lobus cinguli und lobus insulae. Zeitschrift für die gesamte Neurologie und Psychiatrie 100: 706-712.

77) Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR. 2011. The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann N Y Acad Sci 1225: 59-71.

78) Evrard HC, Forro T, Logothetis NK. 2012. Von Economo neurons in the anterior insula of the macaque monkey. Neuron 74: 482-489.

79) Raghanti MA, Spurlock LB, Treichler FR, Weigel SE, Stimmelmayr R, Butti C, Thewissen JG, Hof PR. 2015. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls. Brain Struct Funct 220: 2303-2314.

80) Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR. 1999. A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci U S A 96: 5268-5273.

81) Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, Dearmond SJ. 2006. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 60: 660-667.

82) Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, DeArmond SJ, Seeley WW. 2012. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22: 251-259.

83) Brune M, Schobel A, Karau R, Benali A, Faustmann PM, Juckel G, Petrasch-Parwez E. 2010. Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathol 119: 771-778.

84) Takahashi H, Kato M, Matsuura M, Mobbs D, Suhara T, Okubo Y. 2009. When your gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 323: 937-939.

85) Shin LM, Dougherty DD, Orr SP, Pitman RK, Lasko M, Macklin ML, Alpert NM, Fischman AJ, Rauch SL. 2000. Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biol Psychiatry 48: 43-50.

86) Bartels A, Zeki S. 2004. The neural correlates of maternal and romantic love. Neuroimage 21: 1155-1166.

87) Singer T, Kiebel SJ, Winston JS, Dolan RJ, Frith CD. 2004. Brain responses to the acquired moral status of faces. Neuron 41: 653-662.

88) Watson KK, Matthews BJ, Allman JM. 2007. Brain activation during sight gags and language-dependent humor. Cereb Cortex 17: 314-324.

89) Aziz-Zadeh L, Kaplan JT, Iacoboni M. 2009. "Aha!": The neural correlates of verbal insight solutions. Hum Brain Mapp 30: 908-916.

90) Letinic K, Zoncu R, Rakic P. 2002. Origin of GABAergic neurons in the human neocortex. Nature 417: 645-649.

91) Radonjic NV, Ayoub AE, Memi F, Yu X, Maroof A, Jakovcevski I, Anderson SA, Rakic P, Zecevic N. 2014. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep 9: 2139-2151.

92) Clowry G, Molnar Z, Rakic P. 2010. Renewed focus on the developing human neocortex. J Anat 217: 276-288.

93) Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, Alvarez-Buylla A, Kriegstein AR. 2013. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci 16: 1576-1587.

94) Ma T, Wang C, Wang L, Zhou X, Tian M, Zhang Q, Zhang Y, Li J, Liu Z, Cai Y, Liu F, You Y, Chen C, Campbell K, Song H, Ma L, Rubenstein JL, Yang Z. 2013. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 16: 1588-1597.

95) Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH, Xu D, McQuillen PS, Garcia-Verdugo JM, Huang EJ, Alvarez-Buylla A. 2016. Extensive migration of young neurons into the infant human frontal lobe. Science 354.

96) Letinic K, Rakic P. 2001. Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4: 931-936.

97) Rakic P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61-83.

98) Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prufer K, Kelso J, Naumann R, Nusslein I, Dahl A, Lachmann R, Paabo S, Huttner WB. 2015. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347: 1465-1470.

99) Krause J, Paabo S. 2016. Genetic Time Travel. Genetics 203: 9-12.

△ ページトップへ