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Introduction

Present-day rain forests of southern South America are separated from other forested regions in the
continent by more than 1,000 km of arid and semiarid lands (Villagran, 1993; Villagran, 1995;
Villagran and Hinojosa, 1997). This vicariant distribution dates back to the development of hyperarid
climates in the western margin of South America during the Plio-Pleistocene transition, resulting
from the strong rain shadow produced by the Andean uplift (Villagran, 1993; Villagran, 1995;
Villagran and Hinojosa, 1997).

Geographic distributions of forest taxa indicate that Chilean forests have conserved ancient
historical links with widely disjunct floras. Hence, the blend of phytogeographic elements that
characterizes contemporary forests of south-central Chile can be traced back to the ancient
Palaeofloras that had occupied southern South America during the Paleogene and early Neogene
periods, under markedly different climatic and geologic settings from those of present days (Hinojosa,
2003, 2005; Hinojosa and Villagran, 1997; Schmithisen, 1956; Villagran and Hinojosa, 1997).
Several models (Hinojosa, 2003, 2005; Hinojosa and Villagran, 1997; Romero, 1978, 1986; Troncoso
and Romero, 1998; Villagran and Hinojosa, 1997) have proposed a succession of Palaeofloras in
southern South America during the Paleogene-Early Neogene. The paleofloras suggest that in the
late Paleocene and early Eocene, the mid-latitudes in South America were covered by tropical-
humid forest (Gondwanica flora). The climate then shifted towards more temperate and dry
conditions, and the tropical-humid forest was replaced by subtropical-humid forest (Subtropical
Gondwanica flora), and then warm-temperate forest (Mixed flora). This trend culminated in the
late Eocene/Oligocene climate deterioration, a marked drop of temperature that occurred around
33-35 Mya. The climate then warmed and became wetter, culminating in the mid-Miocene climatic
optimum, during which the cold-temperate dry forest of the early Oligocene was replaced by
subtropical dry forest (Subtropical Neogene flora). Climatically, different temperature and
precipitation scenarios can be established, such as the Paleocene-Eocene warm optimum, the Eocene-
Oligocene cold event and the mid-Miocene warm climatic optimum (Zachos et al., 2001). All these
climate scenarios are related, among other aspects, to the glacial history of Antarctica and the uplift
history of the Andes (Hinojosa, 2005; Hinojosa and Villagran, 1997).

Currently there are few quantitative data on the Tertiary terrestrial paleoclimate of southern South
America. Such data are critical yet, because they can be used to better understand the evolution of
the flora and fauna, to provide boundary conditions for tectonic models, and to evaluate the output
of general circulation models. Under this context we made a physiognomical analysis and
paleoclimate estimate based on the fossil assemblage from the Ligorio Marquez Formation of
southern Chile.
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Ligorio Marquez Formation

This formation is characterized by a sequence of subhorizontal succession of quartz-sandstones, 60
m thick, with interbedded shales, some carbonaceous shales, and thin coal horizons, exposed in the
southern hills to the north of Laguna Los Flamencos, 25 Km south of Chile Chico (46° 46’ S)
(Suérez et al., 2000). It was assigned to the middle Eocene or earlier, most probably to the Paleocene,
based on K-Ar dates of the basalt above the formation and plant fossil compositions (Suarez et al., 2000;
Yabe et al., in this volume). Plant fossils (including leaves and pollen) have been studied by Uemura
(1988), Yoshida (1990) and recently by Troncoso and collaborators (2002). Yabe et al. (2006, in this
volume) and Okuda et al. (2006, in this volume) provide some new information from the same formation
on megafossils and palynomorphs, respectively.

The fossil assemblage show a blend of tropical-subtropical taxa dominated by Lauraceae familiy
with the presence of Sapindaceae, Myrtaceae, Melastomataceae, Monimiaceae, Proteaceae, and
Podocarpaceae. Based on the plant assemblage, Troncoso and collaborators (2002) suggested a
strong relationship with the fossil flora of Concepcidn - Arauco (Paleocene-Eocene, ~37°S) of
central Chile, which is characterized by warm-humid Neotropical or Gondwanic flora (Hinojosa,
2005; Romero, 1986).

Paleoclimatically, Troncoso and collaborators (2002) suggested warm and humid conditions during
the depositional time; on the other hand, Hinojosa (2005), using the taxa described by Troncoso,
estimated values of mean annual temperature between 24-26+2.1°C and precipitation with values
higher than 200 cm. However, the number of the considered taxa was very low to expect reliable
environmental reconstruction, so in this report newly collected 55 morphotaxa were analyzed using
both univariate and multivariate models. The main objective is to obtain more reliable estimate
about the paleoclimate in Ligorio Marquez Formation.

Materials and methods

Leaf - Physiognomic Analyses

This type of analyses is based on the correlation between woody dicotyledonous leaf morphology
and climatic variables that take into account temperature and moisture. The percentage of leaves
with smooth margins, for example, is positively correlated with mean annual temperature, whereas
leaf size is correlated with mean annual precipitation. This modern relationship constitutes the
analogue for inferring paleoclimate based on certain association of fossil leaves (Bailey and Sinnot,
1916; Dilcher, 1973; Dolph and Dilcher, 1979; Kovach and Spicer, 1996; Sinnott and Bailey, 1915;
Wiemann et al., 1998; Wilf, 1997; Wing and Greenwood, 1993; Wolfe, 1971, 1979, 1993).

By using the modern relation between climate and vegetation, many numeric models have been
proposed for estimating temperature and moisture based on fossil leaves. These methods are based
on univariate (Single Linear Regression (SLR)) and multivariate (Multiple Linear Regression (MLR)
analyses, and Canonical Correspondence Analyses (CCA)) of modern leaf traits with their respective
climates. The most widely used data set is that of CLAMP (Climate-Leaf Analysis Multivariate
Program) developed by Wolfe (1993), based on a systematic collection of plant and climate data
from North America and Asia. In this work we used the last version of CLAMP data set, called
CLAMP3 SA (Hinojosa, 2005; Hinojosa et al., 2006; Hinojosa and Villagran, 1997), which include
data from seventeen localities from Bolivia and Chile. For our analyses we have used a more restricted
version, CLAMP3B SA (161 locs.), which excluded the data from the coldest and driest localities,
where attention was drawn to exclude the sites with coldest mean month temperatures <2°C (Wilf,
1997; Wing and Greenwood, 1993), values not registered for South American climates, which are
mostly under oceanic influence (Schwerdtfeger, 1976).

In this paper we used SLR; MLR and CCA models to infer quantitatively the paleoclimate of
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Ligorio Marquez fossil flora. The values were obtained using the equations published by Hinojosa (2005),
and Gayo and collaborators (2005).

Multiple linear Regression (MLR) models are an extension of Single Linear Regression Models
(SLR), in which a climatic variable can be predicted by more than one leaf physiognomic characters
(Gregory-Wodzicki and Mclntosh, 1996; Jacobs, 1999; Wiemann et al., 1998; Wing and Greenwood,
1993). CLAMP, on the other hand, uses Canonical Correspondence Analysis (CCA) to estimate
climate parameters based on 31 woody angiosperm leaf characters (Gregory-Wodzicki, 2000; Herman
et al., 1996; Wiemann et al., 1998; Wolfe, 1993, 1995). CCA ordinations were performed using
CANOCO v.4 for Windows (ter Braak and Smilauer, 1998). We applied CCA to eight different
climate variables as per the CLAMP3B SA data set. The environmental variables used in the CCA
analysis were: mean annual temperature (MAT); cold-month mean temperature (CMMT); warm-month
mean temperature (WMMT); length of the growing season, i.e. those month with mean temperature (LGS);
mean growing season precipitation (MGSP); mean monthly growing season precipitation (MMGSP);
precipitation of the three consecutive wettest month (or Mean Precipitation of Wet Season, MPW). and
precipitation of the three consecutive driest months (or Mean Precipitation of Dry Season, MPD).

The materials were collected at the “Mina Ligorio Marquez” in the summer of 2004. Fossil plants were
cleaned by hand and photographed with digital camera. Morphotypes were classified by both leaf
architectonic venation pattern and morphology (Hickey, 1974).

Results

Table 1 shows the morphological score obtained for 55 morpho-taxa, which include 36 new taxa in
compared with the previous physiognomic analysis (Hinojosa, 2005). Table 2 shows the results of
both univariate and multivariate models, and Table 3 shows the estimate for each environmental
variable considered. According to the univariate models, the estimate obtained for mean annual
temperature was 19 (= 2.1) °C; while multivariate models predicted values from 16.9 (£ 2.1) °C and
19.5 (£ 2.1) °C (Table 3). For cold-month mean temperature and warm-month mean temperature,
multivariate models estimated values between 10.3 (£ 3.7) °C - 13.6 (£3.8) °C, and 23.6 (£3.2) °C
-24.5 (£3.3) °C, respectively, with a temperature range of 13.4 °C - 10.8 °C (Table 3). According to
the data, the length of the growing season was permanent in Ligorio Marquez, just CCA model
showed a value of 10 (£1) month; while, the lowest CMMT obtained by CCA gave a value of 10 °C
in the limit of the definition of growing season (Table 3).

Mean annual precipitation obtained by univariate model (Table 2) was a value of 157 (+101.8; -
61.8) cm (Table 3). Mean growing season precipitation estimate by CCA and MLR models were
153.7 (£ 42.6) cm and 169.4 (£58.2) cm, respectively (Tables 2 and 3). Finally, Mean Precipitation
of Dry Season values oscillated between 39.7 (x15.3) cm and 29.1 (£15.6) cm (Tables 2 and 3).
Thus, precipitation during MPD was practically equivalent to a quarter of the annual precipitation
values (Table 3).

Discussion and conclusion

The higher number of morpho-taxa considered in this study allowed a more reliable estimate of the
environmental conditions where Ligorio Marquez fossil flora was developed. All variables associated
with temperature exhibited values lower than the previous data published (e.g. Hinojosa, 2005,
table 3). On the other hand, values associated with precipitation variables did not show statistical
differences from those published by Hinojosa (2005, table 3).

According to Di Castri and Hajec (1976), the present location of Ligorio Marquez exhibits the
mean annual temperature oscillating between 7.3 °C and 11.5 °C, and the mean annual precipitation
between 57.2 cm and 192.5 cm. The lowest precipitation values correspond to those of Balmaceda
(45°54°S, 71°43°W) and Chile Chico (46°36’S, 71°43°W) meteorological stations, which are placed
under rain shadow conditions of mountain range, while the higher values correspond to those of Cabo
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Raper station (46°50’S, 73°36’W) located near the Pacific coast with direct influence of humid westerlies.
All the above stations exhibit a length of the growing season less than 7 month (range 7-3).

The paleoclimatic estimates obtained for LM, suggested a MAT difference >8°C compared to the current
temperature; the precipitation amount (>150 cm) similar to that recorded in the area under influence of
humid westerlies; and a length of growing season 10-12 month.

When we compare the estimates from Ligorio Méarquez with those from other Paleocene/Eocene
or Eocene floras (Table 3), previous estimate values for LM (Hinojosa, 2005) were in accordance
with those of the paleofloras under warm and humid conditions, for example, subtropical fossil
floras of Concepcidn - Arauco and Caleta Cocholgue of central Chile (~ 37°S; Hinojosa 2005;
Gayd et al. 2005). However, new estimates for LM in this study are comparable to those of Laguna
del Hunco and Rio Pichileufu floras of Argentine Patagonia (~ 42 °S; Wilf et al. 2005), rather
locating LM floras cooler than the central Chile floras (Table 3). On the other hand, high precipitation
values obtained suggest very wet conditions in LM, probably with rainfall throughout the year
(Table 3). These warm and humid conditions estimated in Ligorio Marquez, support the idea that
subtropical climate extended at least to the location of this fossil flora during the early Paleogene,
under a very low equator-pole temperature gradient, as have been suggested in earlier studies
(Hinojosa 2005; Hinojosa and Villagran 1997; Romero, 1978; Troncoso and Romero 1997).

According to our physiognomical analysis, we can conclude that Ligorio Marquez flora would
represent a subtropical, frost-free and humid vegetation, which in accordance with that postulated
by Troncoso and collaborators (2002) and Uemura (1988). The vegetation was probably established
at southern periphery of the subtropical climatic belt in South America during early Paleogene.
This condition favors the absence of extensive ice sheet in Antarctica, and the different obliquity of
the earth axis during the early Cenozoic (Hinojosa and Villagran, 1997; Sewall and Sloan, 2004).
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Chile; Departamento de Investigacidon, Universidad de Chile # DI 105/01-2 and FONDECYT #
1060041, Chile.
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Table 2. Equations used to estimate values of environmental variables MAT: Mean annual temperature; CMMT:
Cold-month mean temperature; WMMT: Warm-month mean temperature; GSL: length of the growing season;
MGSP: Mean growing season precipitation and MPD: precipitation of the three consecutive driest months (or
Mean Precipitation of Dry Season). 1.- Equations derived by Gayé and collaborators (2005). 2 and 3.- Equations
derived by Hinojosa (Hinojosa 2005; Hinojosa and Villagran 2005). MATv; CMMTv; WMMTyv; GSLv; MGSPv;
MPDv are environmental vectors from CCA analysis. All equations are significant with p< 0.001. Data set
CLAMP3BSA (161 loc.) from Hinojosa 2005; Hinojosa and Villagran 2005 and Hinojosa et al. 2006.

Parameter Equations SE R’
MAT "MAT=1.8116+(0.24*% no teeth)+(0.06795*L:W 2-3:1) 2.1°C 0.9
> MAT=3.25+0.24*% no teeth 2.1°C 0.9
SMAT:_S.1+exp(3.l+(0.24*MATvector)) 2.1°C 0.9
CMMT 'CMMT=-12.1013+(0.3182%% no teeth)+(0.1433*L:W2-3:1) 3.8°C 0.8
2CMMT= _35.2+exp (3.7+(0.2CMMTv)) 3.8°C 0.8
WMMT  'WMMT=16.9076+(0.1218*% no teeth)+(0.1433*nanophylia) 3.2°C 0.5
*WMMT=23.6+4.42* WMMTv-04AWMMTv’ 3.3°C 0.5
GSL 'GSL=2.5238+(0.09765*% no teeth)+(0.08584*L:-W3-4:1)+(0.02334*L:W 2-3:1) 1.2 month  0.83
ZGSL:_14.2108+exp3.1]47+(0.IO98*GSLV) 1.2 month 0.83
MAP ’LnMAP=1.6355+0.492*MLnA In0.5cm 0.6
MGSP ' MGSP=-180.5805+(4.2008*% L:W 2-3:1)+(2.8854*% elliptic) 582cm 0.6
® MGSP=75.5%exp" > MY 42.6cm 0.8
MPD 'MPD=-47.5145+(1.032*% elliptic)+(0.9776* % microphylla 3) 156cm 0.6

ZMPD:17.5*exp(°'7*MPDV) 153 cm 0.6
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Table 3. Environmental estimate base on physiognomical analysis from southern South American fossil floras.
LM: Ligorio Marquez; LC: Concepcion — Arauco; CC: Caleta Cocholgiie; LH: Laguna del Hunco; RP: Rio
Pichileufu. 1: Data from this study; 2: Data from Hinojosa (2005); 3: Data from Gay¢ et al. (2005); 4: Data from
Wilf et al. (2005). a. Multiple linear Regression; b. Single linear Regression and c. Canonical correspondence
analysis

Parameter LM LM ? LC? cc’ LH* RP* LH* RP*

MAT (°C) 19.5°42.1  25.7°+21 22.8'+21 255%°+21 19.6°+21 209%°x21 - -
19.0°42.1  259°+2.1 21.6°+2.1 22.8°+21 193°+22 20.6°+21 16.6°+2.0 19.2°+2.4
16.9°42.1  24.7°421 219°+21 19.3°x2.1 17.5°+21 183°421 - = -----

CMMT (°C) 13.6°+3.8 21.5°+38 18.7°+3.8 22.4°+38 13.7°+3.8 154°+38 -—- -

103°+3.8  20.1°#3.8 16.6°+3.8 13.2°+38 10.8°+3.8 11.8°+38 --—- = --—--
WMMT (°C) 245°+32 27.7°#32 25.7°%32 27.0°%32 246 %32 252°%32 --——- = --—--

23.6°+33  263°#33  253°+33 22.6°%32 24.6°£33 23.1°%33 - -
RANGE (°C) 10.8° 6.2° 7.0° 5.4° 10.9° 10.8¢° e e

13.3° 6.2° 9.3° 9.2° 13.8° 1135 e e
GSL (months) 12.0°+12  12°+12 12°+12 12.0°412  10°%1.2 12°+12 - -

LY 72 ) S (0 1) Yo

157° 152.9° 202.9° 263 193.7° 166.3° 114> -
+101.8-61.8 +99.3-60.2 +131.7-79.9 +104.3-171.9 +125.8-76.3 +108 -65.5 +49.1-343

GSP (cm) 169°+58.2  168.5°+58.2 172.1°+582 190°+582  120.5°+58.2 130.5%+58.2 -=---  -=-=-
153.7°442.6 296.6°+42.6 ===== == mmeem s e e
---------- 364.6°+42.6 268°+42.6  223.7°+42.6 167.3°+42.6 -

MPD (cm)  29.1°+156 39.2°%15.6 33°+156  30.0°x156 21.5°%156 31.3%:156 - ---—-
39.7°£153 === memee e e e e e
----- 45.0°£153 68.2°+153 358°+153  49.8°%153 34.3°%153 -

No. Taxa 55 19 94 40 30 120 131 39




