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ABSTRACT

A new species of tindariid bivalve, Tindaria hamuroi 
new species, is described from the upper lower Miocene 
Higashibessho Formation in central Honshu, Japan which 
was deposited in lower sublittoral to upper bathyal settings. 
This is the first case of the fossil occurrence of an elongate 
ovate shell-type Tindaria. Among the fossil and extant spe-
cies of Tindaria, Tindaria hamuroi new species is the only 
species from the Japan Sea side of Japan. Other than Tin-
daria, the nucinellid Nucinella, the malletiid Malletia, the 
mytilid Bathymodiolus (s. l.), the cuspidariid Myonera, and 
the vesicomyids Pliocardia and Calyptogena became extinct 
in the Japan Sea.

Additional Keywords: Higashibessho Formation, Japan Sea,  
paleobathymetry, Protobranchia

INTRODUCTION

The genus Tindaria was proposed by Bellardi (1875), 
based on the “Pliocene” [= Miocene] species Tindaria 
arata Bellardi, 1875 from northwestern Italy. Extant 
members of this genus are cosmopolitan deep-water 
dwellers ranging from 250 m to 6000 m in depth (Sand-
ers and Allen, 1977; Salas, 1996; Xu, 1999; Kurozumi 
et al., 2017). Twenty-six extant species are accepted by 
MolluscaBase (2021).

Coan et al. (2000), Coan and Valentich-Scott (2012) 
and  Valentich-Scott et al. (2020) stated the genus dated 
to the Pliocene and expected much older records. How-
ever, the type species, T. arata itself dated back to the 
Messinian (late Miocene) as noted by Merlino (2007). A 
total of nine fossil taxa including two doubtful ones and 
two subspecies are known mainly from the Miocene and  
Pliocene in Europe, northwestern America and Japan 
(Table 1; Kurihara, 1999; Koskeridou et al., 2019).

The oldest species of this genus is Tindaria paleo-
cenica Amano and Jenkins, 2017 from the Paleocene 
Katsuhira Formation in eastern Hokkaido, northern 
Japan. An inner mold of Tindaria? sp. was illustrated 

by Kurihara (1999) from the lower middle Miocene 
Arakawa Formation in Saitama Prefecture, central 
Honshu. Moreover, two specimens of Tindaria sp. were 
listed from the upper lower Miocene Higashibessho 
Formation in Toyama Prefecture, central Honshu by 
Amano et al. (2004).

As a result of our examination of the above Higashi-
bessho specimens, we have determined that they are dis-
tinguished from all other fossil and extant species. Thus, 
we describe the specimens as a new species and discuss 
its evolutionary significance.

MATERIALS AND METHODS

Two specimens were recovered from mudstone of the 
lower part of Higashibessho Formation at Shimosasa-
hara, Toyama City, central Honshu (see Amano et al., 
2004: figure 1). Based on diatom assemblages, the lower 
part of this Formation was assigned to the NPD3A zone 
(16.6–17.0 Ma; Yanagisawa and Akiba, 1998; Yanagisawa 
and Watanabe, 2017) by Yanagisawa (1999). Nakajima 
et al. (2019) dated the Yamadanaka Tuff just below the 
Higashibessho Formation to 16.6 and 16.4 by U-Pb and 
Fission track methods. From these data, the Higashi-
bessho Formation at Shimosasahara can be assigned to 
the upper lower Miocene (Burdigalian).

Based on benthic foraminifers, the Higashibessho 
Formation was deposited in the middle to upper bathyal 
zone (Hasegawa and Takahashi, 1992). Molluscan and 
ostracod assemblages from the formation suggest an 
upper bathyal to lower sublittoral depth (Shimizu et al., 
2000; Amano et al., 2004, Ozawa, 2016).

For morphological examination, we acquired scan-
ning electron microscopy (SEM) images using a JEOL-
5310 instrument (JEOL, Tokyo) at National Museum of 
Nature and Science, Tokyo (NMNS, Tsukuba, Ibaraki) 
with the standard technique following sputter coating 
with gold/palladium. Both specimens, including a sili-
cone rubber replica of the right valve of the holotype, are 
housed in the Department of Geology and Paleontology, 
NMNS (NMNS PM 65153, PM 65154).
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SYSTEMATIC DESCRIPTION

Family Tindariidae Verrill and Bush, 1897

Genus Tindaria Bellardi, 1875

Type Species: Tindaria arata Bellardi, 1875 by original 
designation

Tindaria hamuroi new species (Figures 1–7)

Diagnosis: Small and elongate species of Tindaria with 
well inflated umbo. Umbo located at anterior one-third of 
shell length. Surface sculptured by fine commarginal ribs.

Description: Shell medium for genus, to 7.6 mm long, 
rather thin, elongate ovate (H/L = 0.79 for holotype, 0.72 
for paratype) with porcellanous inner layer, well inflated 
(W/L =0.59 for holotype, 0.57 for paratype), equivalve, 
and inequilateral. Prodissoconch smooth, attaining about 
300 μm in length. Antero-dorsal margin straight, con-
tinuing to semi-circular anterior margin; ventral mar-
gin broadly rounded; posterior end narrowly rounded 
or subtruncated, continuing to straight postero-dorsal 
margin. Umbo prominent, inflated, prosogyrate, located 
at anterior third of shell length (AL/L = 0.34 for holo-
type, 0.31 for paratype). Surface sculptured with many 
fine, distinct commarginal ribs. Hinge plate of left valve 
narrow, with two series of small teeth; 13 anterior teeth; 
20 posterior teeth; no resilium or interruption. Posterior  
adductor muscle scar of right valve small, subovate- 
rhomboid. Pallial line entire, rather thick.

Holotype: A specimen that was originally conjoined; in-
tact left valve (NMNS PM 65153a), length 7.6 mm, height 
6.0 mm, and an outer mold of right valve preserved with 
fragments of the valve and a silicone rubber replica of the 
mold (NMNS PM 65153b); from the type locality.

Paratype: A conjoined specimen comprising both valves 
(NMNS PM 65154), length 5.8 mm, height 4.2 mm, 
width 3.3 mm; from the type locality.

Remarks: No fossil species resembles Tindaria hamuroi 
new species. It is most similar to the Recent Northwest 

American species Tindaria kennerlyi Dall, 1897 in hav-
ing an elongate ovate shell with inflated umbo. However,  
Tindaria hamuroi new species differs from T. kennerlyi 
by its smaller shell (10 mm long in T. kennerlyi; Coan et al.,  
2000) with more inflated and more anteriorly located 
umbo and having more numerous teeth (11 anterior teeth 
and 18 posterior teeth in T. kennerlyi; Coan et al., 2000) 
in which central teeth are large, thin and vertical to the 
hinge base. The present new species can be distinguished 
from the Recent cosmopolitan species, Tindaria antarctica  
Thiele, 1931 (in Thiele and Jaeckel, 1931) by having a 
more inflated umbo and coarser commarginal ribs.

Type Locality: Shimosasahara in Toyama City, central 
Honshu, Japan (36.569722N, 137.141389E); Higashi-
bessho Formation; upper lower Miocene.

Distribution:  Only from the type locality.

Etymology: Named for Mr. Toshikazu Hamuro in Imizu 
City, who collected the specimens of this species and 
made them available for this study.

DISCUSSION

Some molecular studies suggested that the common 
ancestor of the Tindariidae and Neilonellidae appeared 
in the Cretaceous (Sharma et al., 2013; Sato et al., 2020). 
However, the oldest fossil record of the the certain Tin-
daria so far dates to the Paleocene in the northwestern 
Pacific (Amano and Jenkins, 2017). The genus probably 
migrated to the northeastern part of the Pacific by the 
Oligocene (Kiel, 2006). During the Neogene, it spread to 
Europe and the Caribbean Region (Cossman and Peyrot, 
1912; Woodring, 1925; Koskeridou et al., 2019).

Most fossil species of Tindaria, including the oldest 
species and the type species, have a triangular or circular 
shell. Elongate ovate shells have not been found in the fossil 
record. For example, the extant Tindaria compressa Dall, 
1908, T. kennerlyi, and T. antarctica, all have an elongate 
shell, but their fossils are not known. Thus the present 
Tindaria hamuroi new species represents the oldest 

Table 1.  List of fossil species of Tindaria.

Species Age District Reference

Tindaria paleocenica Amano and  
Jenkins, 2017

Paleocene Hokkaido, Japan Amano and Jenkins (2017)

T.? sp. Oligocene Washington, USA Kiel (2006)
T.? sp. early middle Miocene Honshu, Japan Kurihara (1999)
T. arata Bellardi, 1875 middle ~ late Miocene Northwest Italy Bellardi (1875), Merlino (2007)
T. arata subcytherea Sacco, 1898 middle Miocene Northwest Italy Sacco (1898), Koskeridou et al. (2019)
T. inopinata Cossman and Peyrot, 1912 late Miocene France Cossman and Peyrot (1912)
T. kretensis Koskeridou, La Perna and  

Giamali, 2019
early Pliocene Crete, Greece Koskeridou et al. (2019)

T. (T.) sp. late Pliocene Jamaica Woodring (1925), Donovan (1998)
T. solida Seguenza, 1877 Plio-Pleistocene Southern Italy Seguenza (1877)
T. solida minor Seguenza, 1879 Plio-Pleistocene Southern Italy Seguenza (1879)
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Tindaria having an elongate ovate shell. From these, 
Tindaria having an elongate shell appeared since the late 
early Miocene although the exact reason is unknown.

Based on other molluscan fossils from the Higashi-
bessho Formation at Shimosasahara, paleobathymetry can 
be inferred as lower sublittoral to upper bathyal (Amano 
et al., 2004). In the living fauna, most species of this genus 
around Japan live at middle bathyal to abyssal depths 

except for Tindaria soyoae Habe, 1953 and T. jinxingae 
Xu, 1990 from upper bathyal depths (e.g., Xu, 1990; 
Xu, 1999; Kurozumi et al., 2017). The relatively shallow 
depths of fossil Tindaria were also noted by Koskeridou 
et al. (2019), based on the estimated depth for their Plio-
cene species in the Mediterranean. In conclusion, a ten-
dency to radiate into deeper waters has been recognized in  
Tindaria. Similar changes in their bathymetric distribution  

Figure 1–7.  Tindaria hamuroi new species. 1–4. SEM micrographs. Left valve of Holotype, NMNS PM 65153a. 1. Lateral 
view. 2. Dorsal view. 3. Ventrally tilted inner view showing posterior adductor muscle scar (pa). 4. dorsal view of umbonal region, 
magnified from 2. 5. Silicone rubber mold of right valve of holotype, coated with ammonium chloride under normal right. NMNS PM 
65153b. 6, 7. SEM micrographs. Paratype. NMNS PM 65154. Dorsal view and left umbonal region, respectively. 6 was taken tilted 
to right. Arrowheads denote boundary between dissoconch (dc) and prodissoconch (pd).
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have been recognized in the deep-sea bivalves having dif-
ferent feeding mode like as some chemosymbiotic spe-
cies, such as vesicomyids and bathymodiolins. They now 
live mainly in waters deeper than the upper bathyal zone 
(Thubaut et al., 2013; Lorion et al., 2013; Okutani, 2017; 
Johnson et al., 2017) whereas their fossils were recov-
ered mainly from middle to upper bathyal deposits (e.g., 
Amano and Jenkins, 2007, Amano et al., 2010). Although 
there is some criticism by Little et al. (2002), Callender 
and Powell (1999) stressed that the ancient chemosyn-
thetic communities lived in shallower water than today 
partly because the predation pressure in the past was less 
in the shallow water than today.

Some deep-sea bivalves including Tindaria herein studied 
have been recorded from the lower to middle Miocene in the 
Japan Sea side of Japan. Other than Tindaria, these include 
the nucinellid Nucinella, the malletiid Malletia, the mytilid 
Bathymodiolus (s. l.), the cuspidariid Myonera, and the vesi-
comyids Pliocardia and Calyptogena (Tsuda, 1959; Amano 
et al., 2001, 2010, 2019; Amano, 2007). “Ancistrolepidinae” 
[= Parancistrolepidinae; Kantor et al., 2021] gastropods 
flourished in the Pliocene to early Pleistocene on the Japan 
Sea side but do not survive in the Japan Sea today (Amano  
et al., 1996). All of them are deep-water taxa and became 
extinct in the Japan Sea as a result of the environmental 
change of semi-enclosed Japan Sea after the middle 
Miocene (Nucinella, Tindaria, Bathymodiolus, Myonera, 
Pliocardia), Pliocene (Malletia), early Pleistocene (Paran-
cistrolepidinae) and middle Pleistocene (Calyptogena) (see 
also Amano, 2004).
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