A new species of *Anagaudryceras* (Ammonoidea, Gaudryceratidae) from the lowest Maastrichtian of Hokkaido, Japan

YASUNARI SHIGETÄ¹ AND TOMOHIRO NISHIMURA²

¹Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan (e-mail: shigeta@kahaku.go.jp)
²Hobetsu Museum, 80-6, Hobetsu, Mukawa, Hokkaido 054-0211, Japan

Received October 24, 2012; Revised manuscript accepted March 27, 2014

Abstract. *Anagaudryceras compressum* sp. nov., the most slender of this genus, is newly described from the *Nostoceras hetonaiense* Zone of earliest Maastrichtian age (Late Cretaceous), in the Hobetsu area, Hokkaido, northern Japan. Its shell is fairly small (< 80 mm in diameter) and compressed with a highly arched venter. The last whorl is ornamented with low, broad, gently flexed band-like ribs. Its ornamentation is very similar to *A. matsumotoi*, thus suggesting a close phylogenetic relationship with this taxon, which is probably its descendant.

Key words: ammonoid, *Anagaudryceras*, Cretaceous, Hobetsu, Hokkaido, Maastrichtian

Introduction

One of the best uppermost Cretaceous sections in the North Pacific realm occurs in the Hobetsu area in south-central Hokkaido, northern Japan (Matsumoto, 1942, 1954). The Hakobuchi Formation, occupying the uppermost part of the Yezo Group, is widely distributed in this area and numerous well preserved ammonoids and inoceramid bivalves occur at various horizons. In particular, the sandy mudstone of Unit IVb (Matsumoto, 1942), which is a correlative of the lowest Maastrichtian, is especially fossiliferous. Over the past 65 years, nine species of ammonoids have been described from this unit (Matsumoto, 1947, 1954, 1977; Matsumoto and Obata, 1955; Shigeta, 1989; Shigeta and Nishimura, 2013a, b). *Anagaudryceras* Shimizu, 1934 is one of the most common ammonoid genera in Albian to Maastrichtian-aged sediments in the Northwest Pacific, and more than ten species have been described from Japan and the Russian Far East (Yabe, 1903; Matsumoto, 1984, 1985, 1988, 1995; Matsumoto and Kanie, 1985; Morozumi, 1985; Zonova et al., 1993; Yazykova, 1994; Shigeta and Maeda, 2005). Specimens assigned to the genus are fairly abundant in Albion to lower Campanian sediments as well as those of the upper Maastrichtian, and the intraspecific and ontogenetic shell variations of a few species have been extensively studied (Matsumoto, 1995; Shigeta and Maeda, 2005). In contrast, *Anagaudryceras* from the upper Campanian to lower Maastrichtian is very rare and consequently, its diversity and stratigraphic occurrences are practically unknown.

The late Mr. Yoshitaro Kawashita (1934–2000) first began collecting fossils in Hokkaido in the early 1960’s, and his huge collection was subsequently donated to the National Museum of Nature and Science by his family in 2001 (Shigeta, 2001). The “Kawashita Collection” contains several specimens referable to *Anagaudryceras* from the lowest Maastrichtian in the Hobetsu area. Furthermore, we studied a few additional specimens assignable to *Anagaudryceras* that are housed in the Hobetsu Museum (Mukawa, Hokkaido). These specimens were collected from the lowest Maastrichtian in the Hobetsu area by G. Tanaka (Kumamoto University, Kamiamakusa), H. Yamato (Sapporo, Hokkaido), K. Sugawara (previous staff of the Hobetsu Museum), and coauthor T. Nishimura. In this paper, we describe these specimens as a new species of *Anagaudryceras* and discuss the evolution of *Anagaudryceras* during Maastrichtian time in the Northwest Pacific realm.

Notes on stratigraphy

The 800 m-thick Hakobuchi Formation, which occupies the uppermost part of the Yezo Group in Hokkaido,
is widely distributed in the Hobetsu area (Figure 1). It consists mainly of sandstone and was divided into four lithologic units (IVa–IVd) by Matsumoto (1942). The formation conformably overlies the Kashima Formation, which consists mainly of monotonous mudstone.

Unit IVa, composed mainly of sandstone in association with conglomerate, sandy mudstone and coal beds, contains the Campanian index inoceramid bivalve *Sphenoceramus schmidtii* (Michael, 1899) and *S. orientalis* (Sokolov, 1914) in the middle part (Tanaka, 1960). Unit IVb, dominated by sandy mudstone, contains *Nostoceras heteronaiaense* Matsumoto, 1977 and *Pachydiscus japonicus* Matsumoto, 1947, both of which are indicative of the lowest Maastrichtian (Matsumoto, 1947, 1954, 1977; Tanaka, 1960). Unit IVc, consisting of sandstone with intercalations of conglomerate and sandy mudstone beds, includes the late early Maastrichtian fossils *P. kobayashii* (Shimizu, 1935), *P. gracilis* Matsumoto, 1979, *Gaudryceras izumiense* (Michael, 1899) and *P. heteronaiaense* (Matsumoto, 1942). The columnar section is modified from pl. 6 of Matsumoto (1954) and fig. 4 of Tanaka (1960).
ryceras izumiense Matsumoto and Morozumi, 1980, and S. hetonaianus (Matsumoto, 1952) (Matsumoto, 1979; Matsumoto and Toshimitsu, 1992; Matsumoto et al., 1993; Shigeta et al., 2010). Unit IVd consists mainly of unfossiliferous sandy mudstone.

The specimens upon which we based our new species of Anagaudryceras were obtained from the lower part of Unit IVb (Figure 1) and float calcareous concretions that most likely came from the sandy mudstone of Unit IVb in the Hobetsu area.

Figure 2. Anagaudryceras compressum Shigeta and Nishimura sp. nov. from the Hobetsu area, Hokkaido. A–D, HMG-136 (holotype); A, left lateral view; B, apertural view; C, right lateral view; D, ventral view; E–G, NMNS PM16995 (paratype); E, apertural view; F, right lateral view; G, ventral view; H–I, HMG-1597 (paratype); H, right lateral view; I, ventral view; J–K, HMG-1626 (paratype); J, ventral view; K, left lateral view. Arrow indicates position of last septum.

Paleontological description

Systematic descriptions basically follow the classification established by Klein et al. (2009) and Hoffmann (2010), and morphological terms are those used in the Treatise on Invertebrate Paleontology (Moore, 1957). Quantifiers used to describe the shape of the ammonoid shell replicate those proposed by Matsumoto (1954, p. 246) and modified by Haggart (1989, table 8.1).

Abbreviations for shell dimensions.—$D =$ shell diameter; $U =$ umbilical diameter; $H =$ whorl height; $W =$
Anagaudryceras compressum sp. nov.

Figures 2–6

Anagaudryceras politissimum (Kossmat, 1895). Matsumoto, 1985, p. 23, pl. 3, figs. 1–6.

Type specimens.—Holotype, HMG-136 (Figures 2A–D, 6A), measuring about 63.0 mm in diameter, was extracted from a float calcareous concretion in the Shirafune-no-sawa River, a tributary of the Hobetsu River, in the Hobetsu area. This specimen consists of the phragmocone and a majority of the body chamber, which

Superfamily Tetragonitoidea Hyatt, 1900
Family Gaudryceratidae Spath, 1927
Genus Anagaudryceras Shimizu, 1934

Type species.—Ammonites sacya Forbes, 1846.

Institution abbreviations.—GK = Department of Earth and Planetary Sciences, Kyushu University, Fukuoka; HMG = Hobetsu Museum, Mukawa, Hokkaido; NMNS = National Museum of Nature and Science, Tsukuba.

Lowest Maastrichtian Anagaudryceras

Figure 3. Anagaudryceras compressum Shigeta and Nishimura sp. nov. from the Hobetsu area, Hokkaido. A–B, NMNS PM23453 (paratype); A, ventral view; B, left lateral view; C–D, NMNS PM23454 (paratype); C, right lateral view; D, ventral view; E–H, NMNS PM23455 (paratype); E, apertural view; F, right lateral view; G, right lateral view; H, ventral view. Arrow indicates position of last septum.
begins at a diameter of about 34.0 mm and occupies nearly four-fifths of the outer whorl.

Paratypes, NMNS PM16995, 23453–23455 were extracted from float calcareous concretions in the Shirakaba-no-sawa River, a tributary of the Hobetsu River, in the Hobetsu area. NMNS PM16995 (Figures 2E–G, 6B), measuring 73.0 mm in diameter, consists of the phragmocone and a majority of the body chamber, which begins at about 35.0 mm in diameter and occupies nearly four-fifths of the outer whorl. NMNS PM23453 (Figures 3A–B, 6F), measuring about 67.0 mm in diameter, consists of the phragmocone and a majority of the body chamber, which begins at about 37.0 mm in diameter and occupies nearly four-fifths of the outer whorl. NMNS PM23454 (Figures 3C–D, 6G) consists of the phragmocone and a majority of the body chamber, which begins at about 34.0 mm in diameter and occupies nearly four-fifths of the outer whorl. NMNS PM23455 (Figures 3E–H, 6E) consists of the phragmocone and a majority of the body chamber, which begins at a diameter of about 45.0 mm and occupies nearly four-fifths of the outer whorl.
Paratype, HMG-1597 (Figures 2H–I, 6C), measuring about 34.0 mm in diameter and consisting of only a phragmocone, was collected from a float calcareous concretion in the Omagari-no-sawa River, a tributary of the Mukawa River, in the Hobetsu area.

Paratype, HMG-1626 (Figure 2J–K) was collected from an in-situ calcareous concretion in the lower part of Unit IVb at Loc. H20 of Matsumoto (1942, pl. 17), 1.0 km southwest of Tomiuchi Village, Hobetsu area. It consists of the phragmocone and part of the body chamber.

Paratypes, HMG-1594 and 1595 were extracted from a float calcareous concretion in a small tributary of the Sososhi-sawa River, which is also a tributary of the Hobetsu River, in the Hobetsu area. HMG-1594 (Figure 4A–D), measuring about 33.0 mm in diameter, consists only of a phragmocone. HMG-1595 (Figures 4H–K, 6D), measuring about 64.0 mm in diameter, consists of the phragmocone and a majority of the body chamber, which begins at a diameter of about 42.4 mm and occupies about half of the outer whorl.

Paratype HMG-1596 (Figures 4E–G, 6H), measuring about 61.0 mm in diameter, was extracted from a float calcareous concretion in the Sososhi-sawa River, a tributary of the Hobetsu River, in the Hobetsu area. It consists of the phragmocone and a majority of the body chamber, which begins at a diameter of about 42.4 mm and occupies nearly four-fifths of the outer whorl.

Diagnosis.—Fairly small-sized and compressed Anagaudryceras with highly arched venter and low, broad, gently flexed band-like ribs on last whorl.

Etymology.—Species name refers to its lateral compression, from the Latin word: compressus.

Description.—During earlier growth stages: moderately involute, fairly compressed shell with rounded whorl section, highly arched venter, indistinct ventral shoulders, and slightly convex flanks with maximum whorl width slightly below mid-flank. Umbilicus of moderate width with moderately high, rounded wall. Ornamentation consists of very fine, sinuous growth lines. As growth proceeds, whorl section tends to become slightly compressed and umbilical width becomes smaller. Last whorl ornamented with low, broad, gently flexed band-like ribs. Suture line typical gaudyceratid type, with large, incised, bifid saddles and lobes and retracted suspensive lobes (Figure 5).

Measurements.—See Table 1.

Comparison.—Anagaudryceras compressum sp. nov. is

Table 1. Measurements (in mm) of herein described Anagaudryceras compressum Shigeta and Nishimura sp. nov. specimens from the Hobetsu area, Hokkaido.

<table>
<thead>
<tr>
<th>Specimen no.</th>
<th>D</th>
<th>U</th>
<th>H</th>
<th>W</th>
<th>U/D</th>
<th>W/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMG-1594</td>
<td>33.0</td>
<td>12.3</td>
<td>13.5</td>
<td>12.1</td>
<td>0.37</td>
<td>0.90</td>
</tr>
<tr>
<td>HMG-1597</td>
<td>34.0</td>
<td>11.5</td>
<td>13.8</td>
<td>11.6</td>
<td>0.34</td>
<td>0.84</td>
</tr>
<tr>
<td>HMG-1595</td>
<td>42.4</td>
<td>14.4</td>
<td>19.1</td>
<td>14.9</td>
<td>0.34</td>
<td>0.78</td>
</tr>
<tr>
<td>NMNS PM23455</td>
<td>45.8</td>
<td>15.4</td>
<td>18.9</td>
<td>15.0</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>NMNS PM23454</td>
<td>55.8</td>
<td>16.2</td>
<td>24.3</td>
<td>17.2</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>HMG-136</td>
<td>63.0</td>
<td>16.4</td>
<td>28.8</td>
<td>20.0</td>
<td>0.26</td>
<td>0.69</td>
</tr>
<tr>
<td>NMNS PM16995</td>
<td>73.0</td>
<td>19.0</td>
<td>34.0</td>
<td>22.4</td>
<td>0.26</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Paratypes, HMG-1594 and 1595 were extracted from a float calcareous concretion in a small tributary of the Sososhi-sawa River, which is also a tributary of the Hobetsu River, in the Hobetsu area. HMG-1594 (Figure 4A–D), measuring about 33.0 mm in diameter, consists only of a phragmocone. HMG-1595 (Figures 4H–K, 6D), measuring about 64.0 mm in diameter, consists of the phragmocone and a majority of the body chamber, which begins at a diameter of about 42.4 mm and occupies about half of the outer whorl.

Paratype HMG-1596 (Figures 4E–G, 6H), measuring about 61.0 mm in diameter, was extracted from a float calcareous concretion in the Sososhi-sawa River, a tributary of the Hobetsu River, in the Hobetsu area. It consists of the phragmocone and a majority of the body chamber, which begins at a diameter of about 42.4 mm and occupies nearly four-fifths of the outer whorl.

Diagnosis.—Fairly small-sized and compressed Anagaudryceras with highly arched venter and low, broad, gently flexed band-like ribs on last whorl.

Etymology.—Species name refers to its lateral compression, from the Latin word: compressus.

Description.—During earlier growth stages: moderately involute, fairly compressed shell with rounded whorl section, highly arched venter, indistinct ventral shoulders, and slightly convex flanks with maximum whorl width slightly below mid-flank. Umbilicus of moderate width with moderately high, rounded wall. Ornamentation consists of very fine, sinuous growth lines. As growth proceeds, whorl section tends to become slightly compressed and umbilical width becomes smaller. Last whorl ornamented with low, broad, gently flexed band-like ribs. Suture line typical gaudyceratid type, with large, incised, bifid saddles and lobes and retracted suspensive lobes (Figure 5).

Measurements.—See Table 1.

Comparison.—Anagaudryceras compressum sp. nov. is

Figure 5. Suture line of Anagaudryceras compressum Shigeta and Nishimura sp. nov., NMNS PM23454, from the Hobetsu area, Hokkaido at H = 14.0 mm. Solid line represents the siphuncle, and broken line indicates the position of the umbilical shoulder. E: external (ventral) lobe, L: lateral lobe, U2: second umbilical lobe.

Figure 6. Whorl cross sections of Anagaudryceras compressum Shigeta and Nishimura sp. nov., from the Hobetsu area, Hokkaido at last septum. A, HMG-136 (holotype); B, NMNS PM16995 (paratype); C, HMG-1597 (paratype); D, HMG-1595 (paratype); E, NMNS PM23455 (paratype); F, NMNS PM23453 (paratype); G, NMNS PM23454 (paratype); H, HMG-1596 (paratype).
Yasunari Shigeta and Tomohiro Nishimura

annulls have been laterally compressed by compaction and their actual W/H values would be much higher. According to Morozumi (1985) and Matsumoto (1985), with *A. matsumotoi* shell diameters of 24.8 to 33.0 mm correspond to W/H values of 1.05 to 1.07, in that order. In contrast, with *A. compressum* sp. nov. shell diameters of 33.0 to 34.0 mm correspond to W/H values of 0.92 to 0.84, in that order (Table 1). The new species is also somewhat similar to the inner whorls of *A. yamashitai* (Yabe, 1903) in having a relatively narrow umbilicus and rhythmic faint furrows on the shell surface, but differs by its more compressed whorls and highly arched venter. *A. yamashitai* has a circular venter and an adult body chamber ornamented with distinct, narrow grooves.
Remarks.—Two of the three specimens described as *Anagaudryceras politissimum* (Kossmat, 1895) by Matsumoto (1985), which were collected from the lowest Maastrichtian in the Hobetsu area (GK. H3823, 3824), have a much more compressed shell and narrower umbilicus than *A. politissimum* and are identical to *A. compressum* sp. nov. The third specimen, from the upper lower Campanian in the Naiba area, southern Sakhalin (GK. H2302), is not identical and is probably assignable to a species of *Zelandites* Marshall, 1926, judging from its compressed shell with periodic, gently prorsiradiate weak constrictions. A specimen described as *A. politissimum* by Matsumoto (1995, fig. 36) from the Naiba area (UMUT MM19779) is somewhat similar to *A. compressum* sp. nov., but this specimen is probably a deformed *Gaudryceras striatum* (Jimbo, 1894), because its ornamentation, characterized by fine, dense lirae and narrow, rounded, gently flexed, collar-like ribs, is very similar to that of *G. striatum*.

Occurrence.—One specimen was obtained from an *in situ* calcareous concretion in the lower part of Unit IVb, but all others described herein were collected from float calcareous concretions in the Hobetsu area. Although the exact horizon(s) from which the concretions came is uncertain, judging from where they were found and their lithology, they almost certainly came from the sandy mudstone of Unit IVb, of the Hakobuchi Formation, which is correlated with the mudstone of Unit IVb of the Hakobuchi Formation, and consequently, the ancestor of this new species remains uncertain. Furthermore, this lack of understanding is made even more uncertain because *Anagaudryceras* has not yet been reported from the upper Campanian in the Northwest Pacific realm. Its eventual discovery in these younger sediments would no doubt cast light on the origin of *A. compressum* sp. nov.

The last whorl of *Anagaudryceras compressum* sp. nov. is ornamented with low, broad, gently flexed band-like ribs, and similar ribs are observed on the last whorl of *A. matsumotoi* from the lower (?) and upper Maastrichtian (Morozumi, 1985; Matsumoto, 1985; Maeda et al., 2005). This evidence strongly suggests a close phylogenetic relationship between the two taxa, and because the distribution of *A. matsumotoi* is restricted to southwestern Japan, Hokkaido and Sakhalin, it probably evolved from *A. compressum* sp. nov. and flourished in the Northwest Pacific realm during Maastrichtian time.

Acknowledgments

We thank Yasuyuki Tsujino (Tokushima Prefectural Museum, Tokushima), René Hoffmann (Ruhr University, Bochum) and Haruyoshi Maeda (Kyushu University, Fukuoka) for valuable comments on the first draft. We are grateful to Gengo Tanaka (Kumamoto University, Kamiamakusa) and Harunobu Yamato (Sapporo, Hokkaido) for donating specimens and providing information about the localities. Thanks are extended to Jim Jenks (West Jordan, Utah) for his helpful suggestions and improvement of the English text. This study was supported by a grant from the National Museum of Nature and Science in 2012 (No. 20122001) and a Grant-in-Aid for Scientific Research of the Japan Society for Promotion of Science (No. 25400502) to Y. Shigeta and by the Sasakawa Scientific Research Grant from the Japan Science Society (No. 22-234), as well as a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 22916006) to T. Nishimura.

References

Collignon, M., 1949: *Recherches sur les faunes albiennes de...*
ceratids from Hokkaido and Sakhalien. *Memoirs of the Faculty of Science, Kyushu University, Series D, Geology*, vol. 5, p. 119–151.

