Two New Species of the Gobiid Fish Genus *Trimma* (Actinopterygii: Perciformes: Gobiidae) from Japan and Palau

Toshiyuki Suzuki¹, Jiro Sakaue² and Hiroshi Senou³

¹Kawanishi-midoridai Senior High School, 1–8 Kouyoudai, Kawanishi, Hyogo 666–0115, Japan
E-mail: trimma-toshiyuki@hop.ocn.ne.jp
²Southern Marine Laboratory, P.O.Box1598 Koror, Republic of Palau 96940,
E-mail: sakaue01@sml-palau.co
³Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250–0031, Japan
E-mail: senou@nh.kanagawa-museum.jp

Abstract

Two new species of the gobiid fish genus *Trimma*, *T. fasciatum* and *T. matsunoi* are described based on specimens from Japan and Palau. *Trimma fasciatum* (three specimens, 12.4–21.9 mm SL, Kume-jima Island, Japan and Ngis Island, Palau) differs from all other congeners in having 8 predorsal scales; no elongate and filamentous spine in first dorsal fin; all pectoral-ran rays unbranched; height of basal membrane between innermost pelvic-fin rays about 23% of length of fifth ray; shallow to moderate interorbital groove; interorbital space narrow and bony width 18–26% of pupil diameter; and body with 4 broad bright yellow bands when freshly collected and when alive. *Trimma matsunoi* (two specimens, 16.8–26.4 mm SL, near Kashiwa-jima Island, Shikoku, Japan) differs from all other congeners in having 6 predorsal scales; no elongate and filamentous spine in first dorsal fin; fifth pelvic-fin ray unbranched, basal membrane reduced; interorbital groove shallow; no opercle scales; interorbital space wide and bony width 75–77% of pupil diameter; scale pockets with deep orange margins when fresh; 8 to 9 yellowish orange saddles over the dorsal midline and six saddles on the ventral midline when alive.

Key words: *Trimma*, new species, Gobiidae, Japan, Palau.

Trimma is an Indo-Pacific gobiid fish genus, comprising cryptic, tiny (less than 40 mm SL), colorful, tropical species found on coral and rocky reefs, usually at depths shallower than 80 m. According to Winterbottom (2011), *Trimma* can be recognized by having the following combination of characters: lack of cephalic sensory canal pores; much reduced cephalic sensory papillae pattern; wide gill opening extending to below the vertical limb of the preopercle or anterior to this; lack of bony spicules on the outer gill rakers of the first Gill arch; fewer than 12 dorsal- and anal-fin segmented rays; and a fifth pelvic-fin ray that is equal to or more than 40% the length of the fourth pelvic-fin ray.

Trimma, established by Jordan and Seale (1906), may contain about 100 species (Winterbottom, 2011). Of these, 71 described species are currently recognized as valid (Hagiwara and Winterbottom, 2007; Hoese *et al.*, 2011; Suzuki and Senou, 2007, 2008, 2009; Winterbottom and Southcott, 2007; Winterbottom and Zur, 2007; Winterbottom, 2009, 2011), while the others are still unnamed (R. Winterbottom pers. comm.: *T. capostriatum* (Goren, 1981) is a valid species).

In this paper, we describe 2 new species of Trimma collected from Japan and Palau. One of these was first reported by Suzuki and Shibukawa in Senou (2004) as “Trimma sp. 13.” The other one was recently collected from near Kashiwa-jima Island, Shikoku, Japan.

Materials and Methods

Type specimens of the new species are deposited in Kanagawa Prefectural Museum of Natural History (KPM), the National Museum of Nature and Science, Tsukuba (NSMT) and the Osaka Natural History Museum, Osaka (ONHM).

Methods of counting and measurements follow Suzuki and Senou (2007). Pectoral- and pelvic-fin ray branching, squamation, and groove around orbit were described from preserved materials stained with a cyanine blue solution. The methods of Akihito (1984) were used in describing the pattern of the interdigitation of the dorsal-fin pterygiophores between the neural spines (“P–V”). The P–V and vertebrae counts were obtained from radiographs. Cephalic sensory papillae were observed on holotype stained with cyanine blue, and notations follow Miller (1986), Iwata et al. (2007) and Winterbottom (2011). Information about tooth morphology and gill-raker counts were obtained from a paratype stained with alizarin red. Description of the color when fresh was based on color slides of each species. Color descriptions when alive were based on the underwater photographs in Yano in Senou (2004), and/or the Image Database of Fishes in the Kanagawa Prefectural Museum of Natural History (KPM-NR). The names of colors follow the recommendations of the Japan Color Research Institute (1995). Measurements are given in Table 1. In each description, data for the holotype are given first, followed by data for the paratype(s) in parentheses where different. Specimens from Palau were collected under permit RE09-02 (2009) and exported to Japan under an export permit 47710-B (2009).

Trimma fasciatum sp. nov.

(New Japanese name: Dokutsu-shima-benihaze)

(Figs. 1 and 2)

Trimma sp. Hayashi and Shiratori, 2003: 45 (No. 074 underwater photograph, Saipan Island, 4 m depth, photo by H. Kimura).

Trimma sp. 13: Suzuki and Shibukawa in Senou, 2004: 116 (underwater photograph, Kume-jima Island, the Ryukyu Islands, Japan, 25 m depth, photo by T. Kawamoto).

Holotype. OMNH-P 35167, male, 21.9 mm SL, Ngemlis Reef, Ngis Island, Palau, 07°08’17.0”N, 134°13’18.5”E, 30 m depth, 8 May 2009.

Paratypes. NSMT 106482 (ex OMNH-P 34795), male, 20.0 mm SL, cleared and stained, 12 Jan. 2008, same locality and collector as the holotype. KPM-NR 10995, juvenile, 12.4 mm SL, Kume-jima Island, the Ryukyu Islands, Japan, 25 m depth, 22 Nov. 2001.

Two New Species of *Trimma*

Diagnosis. *Trimma fasciatum* differs from the other described species of the genus in the following combination of characters: 8 predorsal scales; no elongate and filamentous spine of first dorsal fin; all pectoral-fin rays unbranched; height of basal membrane between innermost pelvic-fin rays about 23% of length of fifth ray; shallow to moderate interorbital groove; interorbital space narrow and bony width 18–26% of pupil diameter; nape with 1 or 2, and body with 4 broad bright yellow bands when fresh and when alive.

Description. Dorsal-fin rays VI-I, 8; anal-fin rays I, 8; pectoral-fin rays 16 (14 in one; 15 in one); pelvic-fin rays I, 5; segmented caudal-fin rays 8 + 7 (9 + 8 in one), branched caudal-fin rays 6 + 5; longitudinal scales 24 (23 in two); anterior transverse scales 7; posterior transverse scales 4 + 13.
scales 6; predorsal scales 8; P-V 3 /II I I 0 / 9; vertebrae 10 + 16 = 26.

Second and third spines of first dorsal fin longest (second spine in one; third spine in one), but not elongate and filamentous, not reaching posteriorly to second dorsal-fin origin when adpressed (reaching to first segmented ray base of second dorsal fin in one juvenile paratype); first dorsal fin separate from second dorsal fin. All pectoral-fin rays unbranched; fin not reaching posteriorly to above anal-fin origin. All pelvic-fin rays each with two terminal tips; fifth ray 53% (48% in one; 59% in one) of fourth ray in length; fourth ray longest, reaching posteriorly to base of third segmented ray of anal fin when adpressed (anal-fin origin in one juvenile; forth segmented ray base of anal fin in one). No pelvic-fin frenum. Basal membrane between innermost pelvic-fin rays about 23% of length of fifth ray (broken in two) (Fig. 1).
Cheek with two embedded cycloid scales dorsally (absent in two). Opercle with 5 embedded cycloid scales dorsally (2 in one; absent in one juvenile). Pectoral-fin base with 3 cycloid scales in 2 vertical and 2 horizontal rows (2 scales in 1 vertical and 2 horizontal in two), preplevic area scaled in 8 longitudinal and 4 transverse rows of cycloid scales (5 longitudinal rows in one; absent in one juvenile), and anterior half of midline of belly with small cycloid scales (cycloid scales on midline in one; absent on midline in one juvenile). Nape with ctenoid scales, extending anteriorly to orbit. Other parts of body with large ctenoid scales. Gill opening extending below a vertical line just slightly posterior to the middle of the pupil (middle of pupil in one; between anterior edge and middle of eye in one). Anterior naris with a short tube; posterior nasal opening a simple pore, 2 naris diameter from anterior naris and 9 naris diameter from eye. Interorbital groove shallow (moderate in one), postorbital groove absent. Interorbital space narrow and bony width 18% of pupil diameter (26% in one juvenile) (Fig. 1). The cephalic sensory papillae are depicted of the holotype in Fig. 1.

Inwardly curved conical teeth in both jaws. Upper jaw with two-three irregular inner rows of small teeth, grading to a single row on center and posterior parts; an anterior part with an outermost row of 4 large, spaced teeth; center and posterior parts with an outermost row of medium teeth. Lower jaw with 2–3 irregular medial rows of small teeth, grading to a single row on center and posterior parts; anterior part with an outermost row of 7 large, spaced teeth; center part with a single innermost row of 12 medium, spaced teeth.

Color of holotype when fresh (Fig. 2A). Background color of head and body white. Scale pockets of nape and dorsal sides of body with beige margins. Nape with 2 bright orange saddles. Body with 4 broad bright yellow bands. The first band below the first dorsal fin, the second below the second dorsal fin, the third on anterior part of caudal peduncle, the last on posterior part of caudal peduncle and anterior part of caudal fin. Anterior parts of head pinkish. Dorsal part of opercle with a bright orange round mark. Iris bright red and surrounding of purple gold. Snout, cheek, opercle, pectoral-fin base with many minute reddish brown dots. Fins hyaline. Dorsal fins with a bright orange, broad, longitudinal, medial stripe. Caudal fin with a large bright yellow and bright orange mark. Anal and pelvic fins pinkish medi ally. Base and anterior part of pectoral fin white.

Color of holotype in alcohol (Fig. 2B). Pink, red, white and yellow colors faded. Head and body pale yellow. Scale pockets of nape and dorsal sides of body outlined with reddish brown.

Color when alive. Similar to fresh coloration, except as follows: head and body semi-transparent; the scale pockets on the dorsum lack dark margins; gill and aorta deep red; snout, base and anterior part of pectoral fin, interspaces of yellow bands on dorsal side of body pale sky blue; iris and interorbital space bright blue; lacks the yellow bar below the middle of the second dorsal fin, and the bars across the nape are yellowish in Fig. 2C, but the bar below the middle of the second dorsal fin present, and the bars across the body are reddish in Figure of Yano in Senou (2004).

Distribution. Kume-jima Island, the Ryukyu Islands, Japan; Ngis Island, Palau; Saipan Island (photograph only, Hayashi and Shiratori, 2003).

Etymology. The specific name is the Latin fasciatum meaning “bands”, in allusion to the yellow bands of body of the new species.

Comparisons. Trimma fasciatum is most similar to T. flavatrum and T. randalli Winterbottom and Zur, 2007. It differs from T. flavatrum in having: height of basal membrane between innermost pelvic-fin rays about 23% of length of fifth ray (vs. no basal membrane in T. flavatrum); and 4 broad bright yellow bands on body (vs. usually no band but sometimes 2 white bands and one saddle when alive, see Hagiwara and Winterbottom, 2007). Trimma fasciatum differs from T. randalli in having: no elongated spine of the first dorsal fin (vs. second spine elongated in T. randalli); and 4 broad bright yellow bands on body...
Trimma matsunoi sp. nov.

(New Japanese name: Kashiwa-benihaze)

(Figs. 3–5)

Paratype. OMNH-P 23885, male, 16.8 mm SL, cleared and stained, near Kashiwa-jima Island, Tsutomezaki, Otsuki-cho, Kouchi Prefecture, Island, Shikoku, Japan, 53 m depth, 20 Aug. 2010.

Photograph Records from Image Database of Fishes. KPM-NR 44894, same data as the holotype; KPM-NR 44895, same data as the paratype.

Diagnosis. Trimma matsunoi differs from the other described species of the genus in the following combination of characters: 6 predorsal scales; no elongate and filamentous spine of first dorsal fin; fifth pelvic-fin ray unbranched, basal membrane reduced; interorbital groove shallow; interorbital space wide and bony width 75–77% of pupil diameter; no opercle scales; scale pockets with deep orange margins when fresh; 8 yellowish orange saddles over the dorsal midline and 6 saddles on the ventral midline when alive.

Description. Dorsal-fin rays VI–I, 8; anal-fin rays I, 8; pectoral-fin rays 17; pelvic-fin rays I, 5; segmented caudal-fin rays 8 + 7 (9 + 8); branched caudal-fin rays 6 + 6 (6 + 5); longitudinal scales 22 (23); anterior transverse scales 7; posterior transverse scales 7; predorsal scales 6 (0, see the remarks); gill rakers (2 + 11, stained paratype only). P–V 3 /II II I I 0 / 9; vertebræ 10 + 16 = 26 (10 + 15 = 25).

Second spine of first dorsal fin longest but not elongate and filamentous, not reaching posteriorly to second dorsal-fin origin when adpressed; sixth spine reaching posteriorly to second dorsal-fin origin when adpressed; first dorsal fin attached to second dorsal fin via low membrane. Pectoral-fin rays unbranched except eighth ray

<table>
<thead>
<tr>
<th></th>
<th>T. fasciatum</th>
<th>T. matsunoi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>male</td>
<td>male</td>
</tr>
<tr>
<td>Head length (exclude gill membrane)</td>
<td>30.3</td>
<td>broken 31.9</td>
</tr>
<tr>
<td>Snout to first dorsal-fin origin</td>
<td>37.7</td>
<td>40.0</td>
</tr>
<tr>
<td>Snout to second dorsal-fin origin</td>
<td>55.0</td>
<td>55.7</td>
</tr>
<tr>
<td>Caudal peduncle length</td>
<td>30.3</td>
<td>29.5</td>
</tr>
<tr>
<td>Caudal peduncle depth</td>
<td>11.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Snout length</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Upper jaw length</td>
<td>11.9</td>
<td>12.4</td>
</tr>
<tr>
<td>Eye diameter</td>
<td>11.5</td>
<td>12.9</td>
</tr>
<tr>
<td>Bony interorbital width</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Pupil diameter</td>
<td>8.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Longest first dorsal spine length</td>
<td>14.5 (II & III)</td>
<td>12.6 (III)</td>
</tr>
<tr>
<td>4th pelvic-fin ray length</td>
<td>26.0</td>
<td>29.5</td>
</tr>
<tr>
<td>5th pelvic-fin ray length</td>
<td>13.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Pelvic connecting membrane length</td>
<td>3.2</td>
<td>broken</td>
</tr>
</tbody>
</table>

Table 1. Measurements (% SL) for Trimma fasciatum and T. matsunoi.

(vs. one white band on caudal peduncle, see Winterbottom and Zur, 2007).
Two New Species of Trimma (all rays unbranched); fin not reaching posteriorly to above anal-fin origin. First four pelvic-fin rays each with 2 terminal tips; fifth ray unbranched and 46% (59%) of fourth ray in length; fourth ray longest, not reaching posteriorly to anal-fin origin when adpressed (-reaching base of first segmented ray). No pelvic frenum; basal membrane reduced but present, hidden under the posteriormost scale between pelvic fins (Fig. 3).

Cheek and opercle without scales. Pectoral-fin base with 2 weak ctenoid scales and 5 cycloid

Fig. 3. The cephalic sensory papillae and squamation of head, and basal membrane of pelvic fins in Trimma matsunoi, NSMT 106483, holotype, female, 26.4 mm SL. Dorsal (top), lateral (middle) and ventral (bottom) views of head. Dots represent the sensory papillae. AN and PN indicate anterior and posterior nares, respectively. Arrows show position where gill membrane is attached to isthmus.
scales (six cycloid scales) in 2–3 (2) vertical and 2–3 (4) horizontal rows, preplevic area with a weak ctenoid scale and 12 cycloid scales in 5 longitudinal and 5 transverse rows (damaged), and anterior belly with small cycloid scales. Nape with ctenoid scales, extending anteriorly to

orbit (no scales on predorsal midline and left side base of the first dorsal fin: see the remarks). Remainder of body with large ctenoid scales. Gill opening extending below a vertical line just slightly posterior to the middle of the pupil. Anterior naris with a short tube; posterior nasal opening a simple pore, 3.3 naris diameter from anterior naris and 8 naris diameter from eye. Interorbital groove shallow (absent), postorbital groove absent. Interorbital space wide and bony width 78% of pupil diameter (77%) (Fig. 3). The cephalic sensory papillae of the holotype are

depicted in Fig. 3.

Inwardly curved conical teeth in both jaws. Upper jaw with 2 irregular inner rows of small teeth, grading to single posterior row; anterior and center parts with outermost row of 7 large, spaced teeth. Lower jaw with 3 irregular inner rows of small teeth, grading to single posterior row; anterior part with an outermost row of 6 large teeth; center part with a single innermost row of 5 large teeth.

Color of types when fresh (Figs. 4A and 5A). Background color of head and body grayish white. Belly white. Scale pockets with deep orange margins (pale brown) except for those on belly. Dorsal and ventral most part of body and posterior most part of tail yellowish (nape with 2, the dorsal midline of body with 7, and the ventral midline of belly and tail with 6 light yellow saddles). Snout and interorbital space grayish, and nape orange. Lower half of head and posterior margin of eye light yellow. Iris with red, yellow, and black marks (iris yellow). Cheek, opercle and pectoral-fin base with many minute yellowish brown dots. Fins hyaline. Dorsal fins with a light yellow, broad, longitudinal, basal stripe. Pectoral and anal fins light yellow except margins. Anterior part of pelvic fin and pectoral-fin base grayish white. Caudal fin light yellow except upper and lower margins (a yellow band on base of the fin).

Color of types in alcohol (Figs. 4B and 5B). Red, orange, white and yellow colors faded. Head and body yellowish white. Scale pockets outlined with yellowish brown. Lower half of dorsal fins, anal and caudal fins with many minute yellowish brown dots.

Color of types when alive (Figs. 4C and 5C). Similar to fresh coloration except as follows: head and body semi-translucent; nape with 1 (2) and the dorsal midline of body with 7 bright yellowish orange saddles; interspaces of those saddles pale sky blue; a broad, light yellowish orange stripe from snout to caudal peduncle; this orange stripe interrupted by 3 pale sky blue marks below the second dorsal fin; a dark gray stripe along upper margin of orange stripe; dorsal part of belly with 2 pale sky blue marks; the ventral midline of belly and tail with 6 light yellowish orange saddles; iris vivid orange with three strong blue marks (upper part of eye and interorbital space bright greenish blue); upper and lower margins of caudal fin with a pale pink stripe respectively (a light yellow band on base of the fin).

Distribution. Near Kashiwa-jima Island, Otsuki-cho, Kouchi Prefecture, Island, Shikoku, Japan

Etymology. The specific name, *matsunoi*, honors Mr. Kazushi Matsuno, who first discovered the new species.

Remarks. The paratype lacks scales on the predorsal midline and on the left side of the base of the first dorsal fin, and has the malformation of some of the neural spines beneath the first dorsal fin.

Comparisons. *Trimma matsunoi* is most similar to *T. caudipunctatum* and *T. maiandros* in overall morphology. However, *T. matsunoi* differs from *T. caudipunctatum*, in having: no opercle scales (vs. some cycloid scales dorsally in *T. caudipunctatum*); interorbital space wide and bony width 75–77% of pupil diameter (30–36%); 8 saddles over the dorsal midline and six saddles on the ventral midline when alive (vs. no saddles, see Suzuki and Senou, 2009). The new species differs from *T. maiandros*, in having: 5 predorsal scales in midline (vs. usually naked in *T. maiandros*); no blue zigzag line on semi-translucent body (vs. a blue zigzag line on red body, see Hoese *et al.*, 2011).

Acknowledgments

We wish to express our sincere gratitude to T. Kawamoto, A. Sakamoto, and K. Matsuno (AQUAS Kashiwajima Diving Service) for their cooperation in the present study. We also thank R. Winterbottom (ROM) for his critical comments on the manuscript.
Two New Species of Trimma

Literature Cited

Manuscript received 22 July 2011; revised 20 September 2011; accepted 15 October 2011. Associate editor: K. Matsuura