Endoparasites Collected from the Gray Whale

Eschrichtius robustus Entangled in a Set
Net off Minamiboso-shi, Chiba, on the Pacific Coast of Japan

Toshiaki Kuramochi¹, Kazumi Arai-Leon², Ayako Umetani³,
Tadasu K. Yamada¹ and Yuko Tajima¹

¹ Department of Zoology, National Museum of Nature and Science,
4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan
E-mail (TK): kuramoti@kahaku.go.jp
² Caminito Montanoso, San Diego, CA USA
³ Chiba Prefectural Office,
1–1 Ichiba-cho, Chuo-ku, Chiba-shi, Chiba 260–8667, Japan

Abstract During a necropsy of the gray whale, Eschrichtius robustus Lilljeborg, entangled and found dead in a set net along the Pacific coast of Japan, several endoparasites were collected. They were identified to be Ogmogaster antarctica Johnston, 1931 (Trematoda: Notocotylidae), Diphyllobothrium macroovatum Jurachno, 1973 (Cestoda: Diphyllobothriidae) and Priapocephalus eschrichtii Murav’eva and Treshchev, 1970 (Cestoda: Tetrabothriidae). These are the first records on endoparasites of the gray whale from the western North Pacific.

Key words: Ogmogaster antarctica, Diphyllobothrium macroovatum, Priapocephalus eschrichtii, gray whale, Japan.

Introduction

Surveys on stranded and incidentally caught animals are essential for marine mammal studies. It is also the case with parasitology to reveal faunal diversity and to evaluate potential utilities of several biological indicators; these have been carried out by many authors (e.g. Abollo et al., 1998; Dailey and Stroud, 1978; Dailey et al., 2000; Gibson et al., 1998; Gulland et al., 2005; Mignucci-Giannoni et al., 1998).

Among those and other papers, reports on parasites of stranded gray whales, Eschrichtius robustus Lilljeborg, are limited. Dailey and Stroud (1978) recorded a cyamid ectoparasite by the examinations on two gray whales stranded along the coast of Oregon. Dailey et al. (2000) examined a juvenile gray whale stranded along the California coast and recorded one cyamid, one acanthocephalan, two trematodes and one nematode species. Gulland et al. (2005) reported several species of trematodes, one acanthocephalan and cyamid from three gray whales during a survey of an “unusual mortality event” in 1999–2000 along the west coast of North America.

Sixteen species representing 9 genera from 7 families of gray whale parasites have been recorded to date, however most of all of those records have been made on the gray whales inhabiting the eastern North Pacific, Bering Sea and Chukchi Sea (e.g. Dailey et al., 2000; Hurley and Mohr, 1957; Rice and Wolman, 1971; Jurachno, 1967, 1973; Treshchev, 1966; Zimushko and Ivashin, 1980). Moreover, nothing is known on endoparasites of the gray whale in the western North Pacific including the waters around Japan (see Kuramochi, 2003). There are only two references on parasites of the gray whale in Japanese waters. Takeda and Ogino (2005) and Murase et al. (2014) reported a cyamid ectoparasite col-
lected from the same individual examined in the present study, entangled and found dead in a set net off Minamiboso-shi (it was addressed in Tomiyama-machi, Awa-gun at the time of the event), Chiba, off the Pacific coast of central Japan, on 11 May 2005, and stranded off the Pacific coast of Nishiki-oka, Tomakomai-shi, Hokkaido, Japan, on 2 August 2007, respectively. The present paper reports three endoparasite species of the gray whale for the first time from the western North Pacific.

Materials and Methods

Worms were fixed in 10% formaldehyde solution in the field and later preserved in 70% ethanol in the laboratory. Some were flattened under slight pressure by two pieces of slide glass, stained in alum carmin, dehydrated in a graded ethanol series and mounted in Canada balsam. In the case of the diphyllobothriid cestode, sagittal and transverse sections were also made. Measurements were made by using a microscope equipped with an ocular micrometer or a profile projector. Specimens were deposited in the National Museum of Nature and Science (NSMT-Pl), Tokyo, Japan.

Results

The following three species of endoparasites were obtained from the single gray whale examined. Remarks on taxonomy, distribution and prevalence are given for each parasite species.

Class Trematoda Rudolphi, 1808
Order Echinostomida LaRue, 1957
Superfamily Pronocephaloidea Looss, 1899
Family Notocotylidae Lühe, 1909
Genus *Ogmogaster* Jägerskiöld, 1891
Ogmogaster antarctica Johnston, 1931 (Fig. 1)

Materials. Many specimens from the large intestine (NSMT-Pl 5701) and caecum (NSMT-Pl 5702).

Remarks. Present specimens with body 6.10–7.45 long × 3.24–4.51 mm wide, 15–17 ventral ridges, 28–31 crenulations on body margin; vitellaria scattered in rather limited pre-testicular zone; filamentous eggs ca. 190–280 μm in length (eggs proper 18.2–19.2 × 10.0–11.5 μm) correspond well with the taxonomic criteria of *O. antarctica* by Rausch and Fay (1966).

This species has been recorded from several marine mammalian hosts inhabiting both hemispheres (see Malatesta et al., 1998) including the gray whale (Dailey et al., 2000; Rice and Wolman, 1971). In contrast, *O. pentalinea* Rausch and Fay, 1966, a smaller species with a body 1.5–3.5 × 0.8–2.0 mm and only five or six ventral ridges, seems to be known only from the gray

![Fig. 1. *Ogmogaster antarctica* Johnston, 1931. A, a whole mount (scale bar, 1 mm); B, a contracted specimen showing a-ventral ridges, b-marginal crenulations and c-everted cirrus (scale bar, 0.5 mm); C, eggs with polar filaments (scale bar, 50 μm).](image-url)
whale (Dailey et al., 2000; Rausch and Fay, 1966; Rice and Wolman, 1971; Zimushko and Ivashin, 1980). Zimushko and Ivashin (1980) reported the prevalence of O. pentalineata to be 58.7% in the gray whales mainly caught off Chukotka (= Chukchi) Peninsula but no O. antarctica was found, while Rice and Wolman (1971) recorded prevalences of O. pentalineata to be 22% and of O. antarctica to be 33% in the grey whales off California. In addition, Rice and Wolman (1971) and Dailey et al. (2000) stated that a large majority of the intestinal trematodes in the gray whale were O. antarctica. In the present study, O. pentalineata was not found in our examinations of two sub-samples.

Species of the genus Ogmogaster have not been recorded from marine mammals in the waters around Japan even though a series of intensive parasitological surveys on the common minke whale, Balaenoptera acutorostrata Lacépède, in the western North Pacific have been performed (Araki et al., 1997; Kuramochi et al., 1996; Uchida et al., 1998; see also Kuramochi, 2003). We are aware of one case where O. cf. plicata (Creplin, 1829) Jägerskiöld, 1891 was recorded from a common minke whale stranded in the Japan Sea off the coast of Gotsu City, Shimane, Japan (Kuramochi, unpublished).

Class Cestoda Van Beneden, 1849
Order Pseudophyllidea Carus, 1863
Family Diphyllobothriidae Lühe, 1910
Genus Diphyllobothrium Cobbold, 1858
Diphyllobothrium macroovatum Jurachno, 1973
(Fig. 2)

Materials. A total of three lots of specimens from the small intestine, a strobila over 5 m long with scolex and gravid ploglottids (NSMT-Pl 5703), a young strobila ca. 1.8 m long with scolex (NSMT-Pl 5704) and several fragments containing scoleces and gravid ploglottids (NSMT-Pl 5705).

Remarks. Present specimens with scolex 1.05–1.32 mm long by 1.16–1.39 mm wide in lateral view, ploglottids 2.82–3.47 mm long by 18.5–20.4 mm wide in the approximate portion of maximum width; seminal vesicle 0.62 mm long by 0.49 mm wide in sagittal section, cirrus pouch 0.74 mm long by 0.32 mm wide in sagittal section; uterine loop count 6–9; eggs 90.0–95.0 × 60.0–64.5 μm are identified to be D. macroovatum mainly based on Kamo (1999).

Records of this species are limited to the original description by Jurachno (1973), which was based on material from the gray whale caught off the Chukotka (= Chukchi) Peninsula, and several records from the common minke whale in the northwestern North Pacific (Araki et al., 1997; Kamo et al., 1980; Maeda, 1986; Uchida et al., 1998). Uchida et al. (1998) reported the prevalence of D. macroovatum to be 10% in the common minke whale, while in the previous surveys of the gray whale by Rice and Wolman (1971), Zimushko and Ivashin (1980) and others, this species was not recorded. The worms from the common minke whale are dwarfed in size, 9.5–12.0 mm wide (Kamo et al. 1980) or 4.0–4.4 mm wide in the specimen collected by Araki et al. (1997) (NSMT-Pl 4928), and also contain several morphological differences, i.e. smaller scolex, smaller cirrus pouch, larger seminal vesicle and slightly larger number of uterine loop from those of the gray whale (Kamo, 1999; Kamo et al. 1980; Maeda, 1986).

Order Tetrabothriidea Baer, 1954
Family Tetrabothriidae Linton, 1891
Genus Priapocephalus Nybelin, 1922
Priapocephalus eschrichtii Murav’eva and Treshchev, 1970
(Fig. 3)

Material. A scolex with strobila about 6 cm long removed from the wall of small intestine (NSMT-Pl 5706).

Remarks. Present material has scolex 1.39 mm long by 1.70 mm wide and ploglottids 0.316–0.356 mm long by 2.91–2.96 mm wide.

This species was originally described and is
known only from the gray whale in the Chukchi Sea (Murav’eva and Treshchev, 1970; Zimushko and Ivashin, 1980), and it seems to be rather abundant having been reported in 68.3% of the gray whales mainly caught off the Chukotka (= Chukchi) Peninsula (Zimushko and Ivashin, 1980). In contrast, other congener such as *P. grandis* Nybelin, 1922, known from several species of baleen whale and the sperm whale, *Physeter macrocephalus* Linnaeus, and *P. minor*

Table 1. Parasite fauna of gray whale, *Eschrichtius robustus* Lilljeborg, accumulated from previous and present works by catch locality and data source

<table>
<thead>
<tr>
<th>Areas</th>
<th>Localities</th>
<th>British Columbia, Oregon and California coasts</th>
<th>Off Point Barrow, Alaska</th>
<th>Off Chukotka (= Chukchi) Peninsula and St. Lawrence Is., Alaska</th>
<th>Off Korea and Kamchatka Peninsula, Russia</th>
<th>The Pacific coasts of Japan</th>
<th>The western North Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brachycladium goliath (Van Beneden, 1858)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthosplanchnus pygmaeus Yurakhno, 1967</td>
<td>16, 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ogmogaster antarctica Johnston, 1931</td>
<td>4, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ogmogaster pentatineata Rausch & Fay, 1966</td>
<td>4, 12</td>
<td>11, 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ogmogaster plicata (Creplin, 1829)</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ogmogaster spp.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cestoda</td>
<td>Diphyllobothrium macroovatum Jurakhno, 1973</td>
<td>17</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudophyllidea sp.</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Priapocephalus eschrichtii Murav’eva & Treshchev, 1970</td>
<td>10, 19</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Priapocephalus spp.</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nematoidea</td>
<td>Antakis simplex (Rudolfi, 1809)</td>
<td>4, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acantocephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolbosoma balaenae (Gmelin, 1790)</td>
<td>4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolbosoma sp.</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynosoma semerme (Forsell, 1904)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynosoma septentriani Treshchev, 1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynosoma strumosum (Rudolfi, 1802)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynosoma validum Van Cleave, 1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynosoma sp.</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphipoda</td>
<td>Cyamus ceti (Linnaeus, 1758)</td>
<td>3, 7, 12</td>
<td>6, 7</td>
<td>2, 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyamus kessleri Brandt, 1873</td>
<td>7, 12</td>
<td>6, 7</td>
<td>2, 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyamus scammoni Dall, 1872</td>
<td>4, 7, 8, 12</td>
<td>6, 7</td>
<td>2, 19</td>
<td>1, 18</td>
<td>9, 13</td>
</tr>
</tbody>
</table>

Data sources. 1, Andrews (1914); 2, Berzin and Vlasova (1982); 3, Dailey and Stroud (1978); 4, Dailey *et al.* (2000); 5, Gulland *et al.* (2005); 6, Hurley and Mohr (1957); 7, Leung (1965); 8, Margolis (1954; 1955); 9, Murase *et al.* (2014); 10, Murav’eva and Treshchev (1970); 11, Rausch and Fay (1966); 12, Rice and Wolman (1971); 13, Takeda and Ogino (2005); 14, Tomilin (1937); 15, Treshchev (1966); 16, Yurakhno (1967); 17, Yurakhno (1973); 18, Zenkovich (1934; 1937); 19, Zimushko and Ivashin (1980); 20, Present study.

Discussion

Compared with the abundant work on the gray whale of the eastern North Pacific, fundamental knowledge on the gray whales of the western North Pacific is extremely limited (Jones *et al.*, 1984; Jones and Swartz, 2002; Rice and Wolman, 1971). Parasitology is not an exception, and most of the 16 parasite species representing 9 genera from 7 families reported from the gray whale are known from those hosts examined mainly in the eastern North Pacific, Bering Sea and Chukchi Sea (Table 1). Especially in the waters around Japan, no primary description of a parasite from the gray whale was published until Takeda and Ogino (2005) and Murase *et al.* (2014), who examined cyamid ectoparasitic whale lice.

Of the three species of endoparasites recorded
in this study, the finding of *D. macroovatum* is the second record of this species from the gray whale since its original description in the waters around the Chukotka (=Chukchi) Peninsula (Jurachno, 1973). Tomilin (1937) reported a pseudophyllidean cestode (Ord. Pseudophaliidae [sic.]) from the gray whale caught in the Chukchi Sea, which is speculated to be *Diplogonoporus balaenopterae* (Lönngberg, 1891) by Rice and Wolman (1971), but it is also possibly *D. macroovatum*. This evidence suggests that *D. macroovatum* is one of the major components of the endoparasite fauna of the gray whale. However, *D. macroovatum* has neither been recorded from whales off California nor from off the Chukotka (=Chuckchi) Peninsula, except for the original description of this species by Jurachno (1973) (see Table 1). The present finding of *D. macroovatum* in the gray whale is rather feasible when we consider the occurrence of this cestode in the common minke whale from the western North Pacific (Araki *et al.*, 1997; Kamo *et al.*, 1980; Maeda, 1986; Uchida *et al.*, 1998).

The gray whales from the eastern North Pacific, Bering Sea and Chukchi Sea are infested by three species of amphipod whale louse, *Cymamus ceti* (Linnaeus, 1758), *C. kessleri* Brandt, 1873 and *C. scammoni* Dall, 1872 (Cyamidae), while only *C. scammoni* has been recorded from gray whales in the western North Pacific, Japan Sea and Okhotsk Sea (see Table 1). This may be due to the possibility that *C. ceti* and *C. kessleri* were overlooked by previous authors, as pointed by Hurley and Mohr (1957) and Rice and Wolman (1971). However, it is also possible that the gray whales from the western North Pacific, Japan Sea and Okhotsk Sea really lack these two whale lice in their parasite fauna. This study represents the first report of these three species of endoparasites collected from gray whales from the western North Pacific. These parasites should be added to the list of helminth parasites recorded from marine mammals in the waters around Japan and adjoining seas (Kuramochi, 2003). Needless to say, the parasite fauna of the gray whale from the western North Pacific is inadequately studied because only a few individuals of this host species have been examined. However, it will be suggested that gray whales from different localities consume similar prey items and have similar food habits, by the fact that the endoparasite species collected in this study were mostly shared among their habitats.

Acknowledgments

The present study would not have been possible without the kind consideration given by numerous people and organizations: Mr. Masahisa Watanabe, President of Tomiyama-Cho Fisheries Cooperative Association; Dr. Hidehiro Kato, Professor of Tokyo University of Marine Science and Technology; Dr. Hajime Ishikawa and the members of the Institute of Cetacean Research; Tomiyama Town Office; Chiba Prefectural Office; the National Institute of Far Seas Fisheries and the Japanese Fisheries Agency. Dr. Chuck Blend (Corpus Christi, TX, U.S.A.) kindly critically read the manuscript and gave valuable comments to revise and improve our manuscript.

References

Dailey, M. D., F. M. D. Gulland, L. J. Lowenstein, P. Silvagni and D. Howard 2000. Prey, parasites and pathology associated with mortality of a juvenile gray whale (*Eschrichtius robustus*) stranded along the northern

Kamo, H. 1999. Guide to Identification of Diphyllobothriorid Cestodes. 146 pp. Department of Medical Zoology, Faculty of Medicine, Tottori University, Tottori. (In Japanese.)

Takeda, M. and M. Ogino 2005. Record of whale louse,
Cyamus scammoni Dall (Crustacea: Amphipoda: Cyamidae), from the gray whale strayed into Tokyo Bay, the Pacific coast of Japan. Bulletin of the National Science Museum, Tokyo, Series A, 31: 151–156.

