Chromosome Number of *Lobelia nummularia* (Campanulaceae) in Taiwan and the Philippines Goro KOKUBUGATA^{1*}, Ching-I. PENG² and Domingo A. MADULID³ ¹Tsukuba Botanical Garden, National Science Museum, Tokyo, 1–4–3 Amakubo, Tsukuba, Ibaraki, 305-0005 Japan ²Research Center for Biodiversity, Academia Sinica, Taipei, Nankang, Taipei, 115 Taiwan ³National Philippine Herbarium, Philippine National Museum, P. Burgos Ts., Manila, P.O. Box 2659 Philippines **Abstracts.** Chromosome number of eight plants of *Lobelia nummularia* collected from Taiwan and the Philippines were observed using the standard orcein squash method. The eight plants had the chromosome number of 2n = 28. The present counts on this species were disagreed with that of 2n = 12 on a Taiwanese plant reported by Hsu (1967), and support the basic chromosome number of x = 7 suggested by Lammers (1993) in subfamily Lobelideae. ### Introduction Lobelia nummularia G. Forster is a perennial in subfamily Lobelideae, family Campanulaceae (Fig. 1), and widely distributed from China to India extending to Australia and New Zealand (e.g. Lammers 1998). A chromosome number of 2n = 12 on a plant collected from a locality in Taiwan was previously reported for this species (Hsu 1967). However, Murata (1995) mentioned that the chromosome number reported by Hsu (1967) might be miscount, because its allied species had the basic chromosome number of x = 7 (Lammers 1993, Murata 1995). Aim of the present study is to investigate chromosome number in eight plants of Lobelia nummularia collected from Taiwan and the Philippines. ## Materials and Methods Eight plant materials were collected from eight populations, seven in Taiwan and one in the Philippines (Table 1). Voucher specimens were deposited in herbaria of National Science Museum, Tokyo (TNS). The taxonomic treatment of Lammers (1998) was taken up for the cytological present study. Root tips were cut out from each accession and pretreated in 2 mM 8-hydroxyquinoline at 20°C for 2h, then fixed in acetic ethanol (1:3) at 4°C for 2 h at least. The fixed root tips were macerated in a mixture of 1 N hydrochloric acid and 45% acetic acid (2:1) at 60°C for 10 sec. Somatic chromosomes at mitotic metaphase were stained in 2% aceto-orcein for 2h, and spreaded by the standard squash method. ## Results and Discussion Eight individuals of Lobelia nummularia collected from Taiwan and the Philippines commonly ^{*}Corresponding author. Tel: +81-29-853-8423; Fax: +81-29-853-8998. E-mail address: gkokubu@kahaku.go.jp Fig. 1. Plant of *Lobelia nummularia* (Goro Kokubugata 3895; Mt. Xiaozishan, Pingchi Hsiang, Taipei, Taiwan; on May 15, 2004). | rable 1. | Plant materials (| n Lovella | питтинана | mvestigated | |----------|-------------------|-----------|-----------|-------------| | | | | | | | | | | | | | Locality | Voucher specimen* | Reference** | |---|-------------------|-------------| | TAIWAN, Taipei: entrance of Mt. Caigongkeng-shan, Sanchih Hsiang | GK 8384 | A | | TAIWAN, Taipei: hiking trail, foot of Mt. Xiaozi-shan, Pingchi Hsiang | GK 3895 | В | | TAIWAN, Taipei: Mt. Tataoshan, Wulai Hsiang | GK 4231 | C | | TAIWAN, Taichung: Mt. Baimao-shan, Hoping Hsiang | GK 8744 | D | | TAIWAN, Nantou: Mt. Peitungyen-shan, Jenai Hsiang | GK 8746 | E | | TAIWAN, Hualien: trail to Tali, Hsiulin Hsiang | GK 6294 | F | | TAIWAN, Nantou: Shalinchi Forest Recreation Area, Liku Hsiang | GK 8747 | G | | PHILLIPPINES, Luzon Island: ca. 5 miles north from Banaue, Ifugao | GK 8740 | H | ^{*}GK; personal number of Goro Kokubugata (TNS). showed the chromosome number of 2n = 28 (Table 1 and Fig. 2). A pair of chromosomes had satellite in a chromosome complement of the eight plants at mitotic metaphase (Fig. 2, arrows). Hsu (1967) reported a chromosome number of 2n = 12 in *L. nummularia* (as *Pratia nummularia* (Lam.) A. Braun & Asch.) collected from a locality in Taipei, Taiwan. The present count disagreed with that of 2n = 16 in reported by Hsu (1967). There is a possibility that the chromosome number counted by Hsu (1967) could be miscount as Murata (1995) mentioned. Lammers (1993) reported that members of subfamily Lobelideae including *L. nummularia* has basic chromosome number of x = 7. The present study supports his hypothesis (Lammers 1993), and then suggests that the eight individuals of *L. nummularia* could be the tetraploid cytotype with x = 7. ^{**}Used in Fig. 1 to indicate each individual. Fig. 2. Somatic chromosomes in eight individuals of *Lobelia nummularia*. Each letter refers to a locality list in Table In this study, we took up a taxonomic treatment of Lammers (1998) for the present study, but some taxonomists treated L. nummularia as a synonym of L. angulata G. Forster distributing from China to New Zealand (e.g. Lammers 1992). Previously two chromosome numbers of 2n = 70 as the decaploid cytotype (10x; Beuzenberg and Stiefkens 1959, Murray and Cameron 1990, Murray $et\ al.$ 1992) and 140 as the icosaploid cytotype (20x; Murray and Cameron 1990, Murray $et\ al.$ 1992) were reported for the plants identified as L. angulata. Even if L. nummularia is a synonym of L. angulata, namely if eight individuals investigated are treated as L. angulata, the tetraploid cytotype with 2n = 28 is for the first time in L. $angulata\ sensu\ lato$. The present study detected two visual satellites in a chromosome complement at mitotic metaphase of the eight individuals being thought as the tetraploid cytotype. The lack of satellite number might be due to one of two possible factors. One of thinkable factors is satellite disappearing following polyploidization from 2x to 4x. This phenomenon has been reported in the other plant taxa, for instance in *Gossypium L*. (Malvaceae) by Hanson *et al.* (1996), *Inula L*. (Compositae) by Kokubugata and Koyama (1999) and Saito *et al.* (2005). Another possible factor is that the tetraploid cytotype might be originated from ancestral diploid cytotype having a heteromorphism of satellite in a chromosome complement. Saito *et al.* (2004) reported that only one satellite was detected in a plant of the diploid species of *L. fulgens* Humpl. & Bonpl. ex Willd with 2n = 14. Further investigation using the fluorescence *in situ* hybridization might clarify a mechanism in the lack of satellite number in the tetraploid cytotype of *L. nummularia*. # Acknowledgements The authors are thankful to C.-I Huang (HAST), T. Y. A. Yang, W.-H. Hu (TNM) and R. Ong for their kind help in field trips. This study was partly conducted in connection with the projects of "International-collaborate studies on tropic plant taxa and network building to bioresources database in the East Asian Pacific Rim" supported by the Toyota Foundation (GK, CIP & DAM) and "Taxonomic Surveys on Endangered Plant Species in the Ryukyus and Taiwan" (GK & CIP) supported by the Interchange Association Japan, Taiwan. # 摘 要 台湾産及びフィリピン産 Lobelia nummularia 計 8 個体において、アセトオルセイン染色法により体細胞中期の染色体を観察した。 8 個体全てにおいて染色体数は 2n=28 で、 2 個の付随体が観察された。 算定された染色体数は過去に Hsu (1964) により報告された 2n=16 とは異なった。一方、Lammers (1993) により提唱された本属の基本数 x=7 を支持する結果となった。これらの個体は L. angulata と取り扱われることもあるが、その場合でも 4 倍体は初めての報告である。 ### References - Beuzenberg, E.J. and J.B. Stiefkens, 1959. Contributions to a chromosome atlas of New Zealand flora 3. Miscellaneous families. N. Z. J. Sci. 3: 531–538. - Hanson, R.E., M.N. Islam-Faridi, E.A. Percival, C.R. Crane, Y. Ji, T.D. McKnight, D.M. Stelly and H.J. Price, 1996. Distribution of 5S and 18–28S rDNA loci in tetraploid cotton (*Gossypium hirsutum L.*) and its putative diploid ancestors. Chromosoma (Berl.) 105: 55–61. - Hsu, C.-C., 1967. Preliminary chromosome studies on the vascular plants of Taiwan (I). Taiwania 13: 117-129. - Kokubugata, G. and H. Koyama, 1999. A cytotaxonomic study of two species of *Inula* (Asteraceae) by fluorescence *in situ* hybridization using ribosomal DNA probes. Acta. Phytotax. Geobot. **50**: 237–240. - Lammers, T.G., 1992. Systematics and biogeography of the Campanulaceae of Taiwan. *In*: Peng, C.-I. (ed.) Phytogeography and Botanical Inventory of Taiwan. Inst. Bot., Acad. Sinica Monogr. Ser. **12**: 43–60. - Lammers, T.G., 1993. Chromosome numbers of Campanulaceae III. Review and integration of data for subfamily Lobelioideae. Amer. J. Bot. 80: 660–675. - Lammers, T.G., 1998. Campanulaceae. *In*: Editorial Committee Fl. Taiwan (ed.) Flora of Taiwan IV, 2nd ed. Editorial Committee Fl. Taiwan, Taipei. pp. 57–78. - Murata, J., 1995. A revision of infrageneric classification of *Lobelia* (Campanulaceae-Lobelioideae) with special reference to seed coat morphology. J. Fac. Sci., Univ. Tokyo 15: 349–371. - Murray, B.G. and E.K. Cameron, 1990. An update on the cytogeography of Petia. N. Z. Bot. Soc. Newsletter 22: 7–8. Murray, B.G., E.K. Cameron and L.S. Standring, 1992. Chromosome numbers, karyotypes, and nuclear DNA variation in Pratia Gaudin [sic] (Lobeliaceae). N. Z. J. Bot. 30: 181–187. - Saito, Y., G. Kokubugata and M. Möller, 2004. Evidence for the correlation between rDNA variation and satellite heteromorphy in somatic chromosome complements of *Lobelia fulgens* 'Queen Victoria' (Subfamily Lobelioïdeae, Family Campanulaceae). Ann. Tsukuba Bot. Gard. 23: 5–12. - Saito, Y., G. Kokubugata, K. Kondo, I.V. Tatarenko and P.V. Kulikov, 2005. Distribution patterns of 45S ribosomal DNA sites on somatic chromosomes of three subspecies of *Inula britannica* (Asteraceae) in Japan and Russia. Ann. Tsukuba Bot. Gard. 24: 63–69.