Zircon U–Pb ages of the granitic rocks in the Chikuhi area, central Kyushu, southwest Japan

Yukiyasu Tsutsumi^{1, 2}

¹Department of Geology and Paleontology, National Museum of Nature and Science 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan ²Faculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan E-mail: ytsutsu@kahaku.go.jp

Abstract Zircons U-Pb ages were obtained from 5 granitoid samples in central Kyushu, southwest Japan. Two samples from Kikuchi Granite indicate ages of 106.6 ± 0.9 and 105.7 ± 1.2 Ma. Two samples from Tamana Granodiorite indicate ages of 105.7 ± 0.7 and 105.5 ± 0.9 Ma. The sample from Tsutsugatake Granite indicates an age of 106.0 ± 1.0 Ma. Errors are with 95% confidence interval. Including a previously reported age, zircon U–Pb ages in the study area concentrate around 106 Ma. The zircon ages are thought to be the plutonic age of the granitoids. Although 121–117 Ma of whole rock Rb–Sr ages was previously thought to be the plutonic ages of granitoids in this area, this assumption needs to be recorrected.

Key words: plutonic age, granitoid, Early Cretaceous, central Kyushu

Introduction

Kyushu is tectonically subdivided to three parts, northern, central and southern Kyushu, by the Matsuyama-Imari and Usuki-Yatsushiro tectonic lines (Fig. 1). Basement rocks in northern and central Kyushu consist of Permo-Jurassic accretionary complexes with Cretaceous granitoids. Basements in central Kyushu expose only the southernmost and northern parts called the Higo belt and Chikuhi area, respectively, due to subsidence in the Beppu-Shimabara Graben and covering of volcaniclastics from Neogene to Quaternary volcanos.

Because whole rock (WR) Rb–Sr age was believed to close from crystallization to cooling in igneous rocks (e.g. Moorbath, 1975; Roddick and Compston, 1977), it was thought to be suitable for plutonic age of granitic rocks. Hence, the plutonic age of Cretaceous granitoid in northern and central Kyushu had been discussed using WR Rb–Sr ages in spite of their large uncertainties. These days, zircon U–Pb method which has much higher precision, accuracy and closure temperature than WR Rb–Sr method has become common and it is thought to more accurately indicate plutonic age of granitoids. In northern Kyushu, the plutonic ages of granitoids had been thought to be 118-88 Ma based on WR Rb–Sr age (118±11 Ma to 88±18 Ma; 2σ ; Osanai *et al.*, 1993; Owada *et al.*, 1999). The ages of granitoids have since been updated as 107-98 Ma by zircon U–Pb age (107.4±0.8 Ma to 97.9±1.4 Ma, 95% conf.; Adachi *et al.*, 2012; Miyazaki *et al.*, 2018; Yuhara *et al.*, 2019).

In the Chikuhi area, only one zircon U–Pb age has been reported (Miyazaki *et al.*, 2018). In this paper, five new zircon U-Pb ages of granitoids are obtained. The main purpose of this work is improvement of the age data of granitic rocks in central Kyushu. The result will contribute to clarify the role of Kyushu in the tectonic framework of Japanese Islands.

Geological setting

Cretaceous granitic rocks in the Chikuhi area (Fig. 2) are divided into "older" and "younger" types (Owada *et al.*, 1999; Kamei *et al.*, 2002). The older type granitoids mostly comprise granodiorite to tonalite containing hornblende, whereas the younger type granitoids comprise peraluminous granodiorite to granite containing white mica and sometimes including garnet.

^{© 2021} National Museum of Nature and Science

①Usuki-Yatsushiro TL ②Oita-Kumamoto TL ③Matsuyama-Imari TL ④Ushizu-Kariya TL ⑤Kokura-Tagawa TL

Fig. 1. Distribution map of the pre-Paleogene rocks in northern Kyushu.

Fig. 2. Geological map of the study area showing the sampling localities, modified after Hoshizumi *et al.* (2004). Gd: granodiorite, Gr. Granite.

Granitoids in the Chikuhi area are divided into three bodies (e.g. Kamei *et al.*, 2009; Kamei and Osanai, 2010); Tamana granodiorite which is the older type, and Kikuchi and Tsutsugatake granites which are the younger type. The Tamana granodio-

rite is course to medium grained hornblende-biotite granodiorite. Biotite and hornblende K–Ar ages in the granodiorite are 99.7 ± 2.5 Ma and 106.0 ± 2.6 Ma, respectively (Tomita *et al.*, 2008). Recently, the zircon U–Pb age of 106.1 ± 1.1 Ma (95% conf.;

Miyazaki et al., 2018) was reported. The Kikuchi granite comprises fine to medium grained biotite granite to granodiorite sometimes containing white mica and/or garnet. The WR Rb-Sr isochron age is 121.3 ± 8.4 Ma (2σ ; Osanai *et al.*, 1993), whereas the K-Ar age of muscovite is 95.3 ± 4.8 Ma (Sasada, 1987). Tsutsugatake granite is fine to medium grained two mica-garnet granite. The WR Rb–Sr isochron age is 116.8 ± 12.7 Ma (2σ ; Osanai et al., 1993), whereas biotite and muscovite K-Ar ages are 95.0 ± 4.8 Ma and 95.1 ± 4.8 Ma, respectively (Sasada, 1987). According to classical interpretation based on closure temperatures of minerals used for dating, granitoids in this area were thought to be formed at 121-117 Ma, and had been cooled until ~95 Ma (Kamei and Osanai, 2010).

Analytical methods

At first, the rock samples were scrubbed, and washed in an ultrasonic bath for ten minutes to avoid surface zircon contaminants. Fragmentation of the rock sample was conducted by a high voltage pulse power selective fragmentation equipment, SELFRAG Lab (Selfrag AG). The zircon grains were handpicked from heavy fractions that were separated through heavy-liquid techniques. Zircon grains from the samples, the zircon standards TEMORA2 (416.78 Ma; Black et al., 2004) and OD-3 (33 Ma; Iwano et al., 2013), and the glass standard NIST SRM610 were mounted in an epoxy resin and polished till the surface was flattened with the center of the embedded grains exposed. Before the mounting and polishing, secondary electron (SE) images of each grain were taken for morphological note. After the mounting and polishing, backscattered electron (BE) and cathodoluminescence (CL) images of zircon grains were taken. Scanning electron microscope-cathodoluminescence equipment, JSM-6610 (JEOL) and a CL detector (SANYU electron), were used for SE, BE and CL images. The images were used to select the sites for analysis. U-Pb dating of the samples was carried out using laser ablation inductively coupled plasma mass spectrometry using an NWR213 (Elemental Scientific Lasers) and Agilent 7700x (Agilent Technologies). All processes for sample preparation and analysis were conducted at the National Museum of Nature and Science, Tsukuba, Japan. The experimental conditions and the analytical procedures used for measurements followed Tsutsumi et al. (2012), with the additional devices of a buffered type stabilizer (Tunheng and Hirata, 2004) and TwoVol2 sample cell also applied. The spot size of the laser was 25 µm. A correction for common Pb was made on the basis of the measured ²⁰⁷Pb/²⁰⁶Pb ratio (²⁰⁷Pb correction), ²⁰⁸Pb/²⁰⁶Pb and Th/U ratios (²⁰⁸Pb correction) (e.g. Williams, 1998) and the model for common Pb compositions proposed by Stacey and Kramers (1975). In this paper, we adopt ²⁰⁷Pb correction for age discussion because it is effective for calculating Phanerozoic ²³⁸U-²⁰⁶Pb* age compared to ²⁰⁸Pb correction (e.g. Williams, 1998). ²⁰⁸Pb corrected ²³⁸U/²⁰⁶Pb* and ²⁰⁷Pb*/²⁰⁶Pb* ratios are used for concordia plots. Pb* indicates radiometric Pb. The pooled ages presented in this study were calculated using Isoplot/Ex software (Ludwig, 2012). The data of secondary standard OD-3 zircon obtained during analysis yielded weighted mean ages of 32.3 ± 1.1 Ma (n = 8; MSWD = 0.35; when KKC1, KKC2 and TMN1 were analyzed) and 31.7 ± 1.4 Ma (n = 5; MSWD = 1.13; when TMN2 and TGT were analyzed). MSWD is acronym of mean square weighted deviation, which is calculated from square root of χ^2 value.

Sample descriptions and age results of zircon

Table 1 lists zircon data in terms of the fraction of common ²⁰⁶Pb, U, and Th concentrations, Th/U, ²³⁸U/²⁰⁶Pb* and ²⁰⁷Pb*/²⁰⁶Pb* ratios, and radiometric ²³⁸U/²⁰⁶Pb* ages of the samples. All errors are 1σ level. All zircons in the samples show rhythmic oscillatory and/or sector zoning in CL images (Fig. 3), which is commonly observed in igneous zircons (e.g. Corfu *et al.*, 2003). Errors of weighted mean zircon U-Pb ages are at 95% confidence interval (95% conf.). Concordia and age distribution diagrams are shown in Fig. 4 and 5, respectively. The obtained weighted mean ages and sample localities are summarized in Table 2.

All rock samples are stored in the National Museum of Nature and Science. The registration number of each sample can be found from the rock specimen number in the collection database of the

Y. Tsutsumi

Table 1. LA-ICP-MS U–Pb data and calculated ages of zircons in the samples.

x 1 1	²⁰⁶ Pb _c ⁽¹⁾	U	Th		238x x /206m1 * (1)	207 21 * 206 21 * (1)	²³⁸ U/ ²⁰⁶ Pb* age ⁽¹⁾	²³⁸ U/ ²⁰⁶ Pb* age ⁽²⁾	D 1
Labels	(%)	(ppm)	(ppm)	Th/U	250U/200Pb (1)	²⁰⁷ Pb ⁺ / ²⁰⁰ Pb ⁺ (1)	(Ma)	(Ma)	Remarks
	(, 0)	(PP)	(PPiii)				(1110)	(1114)	
Kikuchi granit	e (KKC1)								
KKC1_01.1	0.00	366	205	0.57	58.56 ± 1.34	0.0460 ± 0.0035	109.2 ± 2.5	109.2 ± 2.5	
KKC1 02.1	0.00	368	155	0.43	59.14 ± 1.49	0.0410 ± 0.0036	108.1 ± 2.7	108.1 ± 2.7	
KKC1_03.1	0.44	816	241	0.30	59.52 ± 1.09	0.0441 ± 0.0033	107.4 ± 2.0	107.9 ± 1.9	
KKC1_04.1	0.00	123	47	0.39	57.43 ± 2.32	0.0375 ± 0.0056	111.3 ± 4.5	111.3 ± 4.5	
KKC1_04.2	0.35	1004	596	0.61	57.44 ± 0.98	0.0418 ± 0.0037	1113 ± 19	111.7 ± 1.8	
KKC1_05.1	0.58	418	232	0.57	60.52 ± 1.41	0.0477 ± 0.0067	105.7 ± 2.4	105.7 ± 2.4	
KKC1_05.1	0.00	147	75	0.57	58.52 ± 2.01	0.0477 ± 0.0007	100.7 = 2.4 100.2 ± 2.7	100.7 = 2.4 100.2 ± 2.7	
KKC1_00.1	0.00	147	215	0.33	56.55 ± 2.01	0.0407 ± 0.0038 0.0484 ± 0.0054	109.2 ± 3.7 112.7 ± 2.5	109.2 ± 3.7 112.7 ± 2.4	
KKC1_0/.1	0.37	452	215	0.49	50.70 ± 1.25	0.0484 ± 0.0054	112.7 ± 2.5	112.7 ± 2.4	
KKC1_08.1	0.00	356	240	0.69	57.03 ± 1.31	0.0505 ± 0.0032	112.0 ± 2.5	111.7 ± 2.6	
KKC1_09.1	1.00	356	216	0.62	60.94 ± 1.49	0.0425 ± 0.0072	104.9 ± 2.5	105.7 ± 2.5	
KKC1_10.1	0.00	805	632	0.81	58.48 ± 1.05	0.0483 ± 0.0026	109.3 ± 2.0	109.3 ± 2.0	
KKC1_11.1	0.00	1237	421	0.35	57.53 ± 0.95	0.0494 ± 0.0019	111.1 ± 1.8	110.9 ± 1.8	
KKC1_12.1	0.00	874	504	0.59	58.79 ± 0.97	0.0443 ± 0.0021	108.7 ± 1.8	108.7 ± 1.8	
KKC1 13.1	0.00	435	261	0.62	60.59 ± 1.43	0.0470 ± 0.0033	105.5 ± 2.5	105.5 ± 2.5	
KKC1 ^{13.2}	0.00	1418	465	0.34	60.59 ± 0.92	0.0484 ± 0.0018	105.5 ± 1.6	105.5 ± 1.6	
KKC1_14_1	0.00	457	302	0.68	59.14 ± 1.29	0.0440 ± 0.0027	108.1 ± 2.3	108.1 ± 2.3	
KKC1_15_1	0.76	354	255	0.74	59.22 ± 1.57	0.0429 ± 0.0027	107.9 ± 2.8	108.7 ± 2.7	
KKC1_16.1	1 03	253	200	0.84	63.06 ± 1.04	0.0429 = 0.0090 0.0370 ± 0.0114	107.9 = 2.0 100.0 ± 3.0	100.7 = 2.7 101.3 ± 2.0	
KKC1_10.1	0.20	255	172	0.04	03.90 - 1.94	0.0379 ± 0.0114 0.0401 ± 0.0065	100.0 ± 3.0 100.2 ± 2.2	101.3 ± 2.9 100.4 ± 2.2	N
KKC1_1/.1	0.20	300	220	0.49	03.04 ± 1.49	0.0401 ± 0.0003	100.2 ± 2.3 100.2 ± 2.1	100.4 ± 2.2	IN
KKCI_18.1	0.14	268	229	0.88	59.85 ± 1.77	0.0496 ± 0.0109	106.8 ± 3.1	106.6 ± 2.9	
KKCI_19.1	0.29	439	167	0.39	60.40 ± 1.29	0.0481 ± 0.0052	105.8 ± 2.2	105.9 ± 2.2	
KKC1_20.1	0.04	912	336	0.38	60.31 ± 1.08	0.0472 ± 0.0038	106.0 ± 1.9	106.1 ± 1.8	
KKC1_21.1	0.00	174	98	0.58	59.72 ± 1.71	0.0451 ± 0.0055	107.1 ± 3.0	107.1 ± 3.0	
KKC1 21.2	0.15	947	391	0.42	59.87 ± 1.03	0.0447 ± 0.0038	106.8 ± 1.8	107.0 ± 1.8	
KKC1 ^{22.1}	0.00	487	351	0.74	62.63 ± 1.23	0.0486 ± 0.0030	102.1 ± 2.0	102.0 ± 2.0	
KKC1 ^{22.2}	0.56	452	209	0.47	57.65 ± 1.25	0.0452 ± 0.0057	110.9 ± 2.4	111.3 ± 2.4	
KKC1_23.1	1.00	216	128	0.61	63.06 ± 1.82	0.0412 ± 0.0097	101.4 ± 2.9	102.3 ± 2.8	
KKC1 24.1	0.00	231	137	0.61	61.06 ± 1.52	0.0423 ± 0.00044	104.7 ± 2.7	$102.5 \ 2.0 \ 104 \ 7 \pm 2.7$	
KKC1_25.1	0.00	703	475	0.60	62.15 ± 1.14	0.0429 ± 0.0044 0.0470 ± 0.0054	107.7 = 2.7 102.0 ± 1.0	107.7 = 2.7 102.0 ± 1.8	
KKC1_25.1	0.55	/03	1/1	0.09	61.54 ± 1.14	0.0479 ± 0.0034 0.0464 ± 0.0058	102.9 ± 1.9 102.0 ± 2.4	102.9 ± 1.8 104.1 ± 2.4	
KKC1_23.2	0.32	410	141	0.33	01.34 ± 1.43	0.0404 ± 0.0038	103.9 ± 2.4 104.7 ± 2.1	104.1 ± 2.4 104.7 ± 2.1	
KKC1_20.1	0.00	033	413	0.67	61.10 ± 1.23	0.0443 ± 0.0027	104.7 ± 2.1	104.7 ± 2.1	
KKC1_27.1	0.00	604	458	0.78	60.26 ± 1.10	0.0458 ± 0.0026	106.1 ± 1.9	106.1 ± 1.9	
KKC1_28.1	0.12	832	163	0.20	60.72 ± 1.12	0.0484 ± 0.0030	105.3 ± 1.9	105.3 ± 1.9	
KKC1_28.2	0.19	595	230	0.40	60.79 ± 1.34	0.0445 ± 0.0048	105.2 ± 2.3	105.4 ± 2.3	
KKC1_29.1	0.00	677	711	1.08	59.19 ± 1.01	0.0487 ± 0.0025	108.0 ± 1.8	107.9 ± 1.9	
KKC1_29.2	0.00	515	191	0.38	61.33 ± 1.18	0.0539 ± 0.0033	104.3 ± 2.0	103.5 ± 2.0	
KKC1 30.1	0.00	642	258	0.41	58.16 ± 1.23	0.0578 ± 0.0030	109.9 ± 2.3	108.6 ± 2.3	D, N
KKC1 ^{31.1}	0.00	336	194	0.59	59.17 ± 1.33	0.0478 ± 0.0040	108.0 ± 2.4	108.0 ± 2.4	
KKC1 31.2	1.06	2736	584	0.22	62.64 ± 1.05	0.0431 ± 0.0031	102.1 ± 1.7	102.7 ± 1.7	
KKC1_32.1	0.65	574	389	0.70	61.69 ± 1.29	0.0446 ± 0.0071	103.7 ± 2.2	104.1 ± 2.1	
KKC1 32.2	0.00	283	54	0.20	59.26 ± 1.62	0.0432 ± 0.0040	107.9 ± 2.9	107.0 ± 2.0	
KKC1_32.2	0.00	205	101	0.20	59.20 ± 1.02	0.0432 ± 0.0040	107.9 ± 2.9 105.2 ± 2.7	107.9 ± 2.9 105.0 ± 2.7	
KKC1_33.1	0.00	204	101	0.30	00.73 ± 1.37	0.0300 ± 0.0041	105.5 ± 2.7	103.0 ± 2.7	
17.1 1.1									
Kikuchi granit	e (KKC2)	212	1.50	0.40	(* (*) *) *)	0.0500 + 0.0004		040105	
KKC2_01.1	0.61	313	150	0.49	65.63 ± 1.84	0.0539 ± 0.0084	97.5 ± 2.7	96.8 ± 2.7	Ν
KKC2_02.1	1.27	231	78	0.35	62.69 ± 1.87	0.0382 ± 0.0088	102.0 ± 3.0	103.3 ± 3.0	
KKC2_03.1	0.00	1123	288	0.26	61.12 ± 0.90	0.0478 ± 0.0023	104.6 ± 1.5	104.6 ± 1.5	
KKC2_04.1	0.00	994	394	0.41	61.79 ± 1.01	0.0485 ± 0.0022	103.5 ± 1.7	103.4 ± 1.7	
KKC2 05.1	0.00	1158	598	0.53	57.02 ± 0.90	0.0491 ± 0.0024	112.1 ± 1.7	112.0 ± 1.8	
KKC2_06.1	0.00	262	92	0.36	60.37 ± 1.71	0.0488 ± 0.0054	105.9 ± 3.0	105.8 ± 3.1	
KKC2_07.1	0.70	343	154	0.46	60.39 ± 1.69	0.0418 ± 0.0077	105.9 ± 2.9	106.6 ± 2.9	
KKC2_08.1	0.00	605	174	0.29	60.66 ± 1.22	0.0484 ± 0.0030	105.4 ± 2.1	105.4 ± 2.1	
KKC2_09.1	0.00	364	127	0.36	60.68 ± 1.22	0.0572 ± 0.0043	105.4 ± 2.2	104.2 ± 2.2	DN
KKC2_0).1	0.00	1008	127	0.30	61.02 ± 1.03	0.0372 = 0.0043 0.0484 ± 0.0010	103.4 = 2.2 104.8 ± 1.7	104.2 = 2.2 104.8 ± 1.8	D, N
KKC2_10.1	0.00	280	151	0.40	01.02 ± 1.03	0.0434 ± 0.0019 0.0425 ± 0.0064	104.6 ± 1.7 105.6 ± 2.9	104.0 ± 1.0 105.0 ± 2.9	
KKC2_11.1	0.55	380	131	0.41	00.30 ± 1.02	0.0423 ± 0.0004	103.0 ± 2.8 102.0 ± 2.7	103.9 ± 2.8	
KKC2_12.1	0.00	223	88	0.40	62.09 - 1.09	0.0480 ± 0.0054	102.0 ± 2.7	102.0 ± 2.8	
KKC2_12.2	0.00	220	/4	0.34	$5/.28 \pm 1.69$	0.0385 ± 0.0053	111.6 ± 3.3	111.6 ± 3.3	
KKC2_13.1	0.00	373	211	0.58	60.20 ± 1.40	0.0452 ± 0.0037	106.2 ± 2.5	106.2 ± 2.5	
KKC2_14.1	0.02	1073	289	0.28	53.38 ± 0.98	0.0505 ± 0.0030	119.7 ± 2.2	119.3 ± 2.2	
KKC2_15.1	0.00	556	285	0.53	61.06 ± 1.22	0.0439 ± 0.0032	104.7 ± 2.1	104.7 ± 2.1	
KKC2_16.1	0.16	1430	260	0.19	62.64 ± 1.10	0.0455 ± 0.0030	102.1 ± 1.8	102.3 ± 1.8	
KKC2 ^{17.1}	0.34	567	406	0.73	63.75 ± 1.55	0.0420 ± 0.0065	100.3 ± 2.4	100.7 ± 2.3	
KKC2 ^{18.1}	0.07	305	99	0.33	59.06 ± 1.63	0.0468 ± 0.0062	108.2 ± 3.0	108.3 ± 2.9	
KKC2 19.1	0.27	641	169	0.27	57.66 ± 1.22	0.0451 ± 0.0044	110.8 ± 2.3	111.1 ± 2.3	
KKC2 19 2	0.00	167	59	0.36	59.31 ± 1.72	0.0445 ± 0.0048	107.8 ± 3.1	107.8 ± 3.1	
KKC2 20.1	0.00	532	280	0.54	62.04 ± 1.18	0.0480 ± 0.0033	107.0 = 5.1 103.1 + 1.0	107.0 = 5.1 103.1 + 1.0	
VVC2_20.1	0.00	622	200	0.27	60.25 ± 1.10	0.0400 - 0.0033	105.1 ± 1.9 106.1 ± 1.0	105.1 ± 1.9 106.0 ± 1.0	
KKC2_21.1	0.24	025	202	0.55	00.23 - 1.11	$0.0400 \pm 0.004/$	100.1 ± 1.9	100.0 ± 1.9	
KKC2_22.1	0.26	324	128	0.40	03.20 ± 1.69	$0.04/2 \pm 0.0063$	98.1 ± 2.5	98.2 ± 2.3	
KKC2_23.1	0.08	224	85	0.39	00.49 ± 1.64	0.0553 ± 0.0075	105.7 ± 2.8	104.8 ± 2.8	
KKC2_24.1	0.70	472	252	0.55	$63./9 \pm 1.49$	0.0439 ± 0.0063	100.3 ± 2.3	100.8 ± 2.3	
KKC2_25.1	0.00	695	290	0.43	61.63 ± 1.11	0.0464 ± 0.0029	103.8 ± 1.9	103.8 ± 1.9	
KKC2_26.1	0.00	931	264	0.29	58.13 ± 0.93	0.0501 ± 0.0024	109.9 ± 1.7	109.7 ± 1.8	
KKC2 26.2	0.00	214	74	0.36	60.21 ± 1.89	0.0451 ± 0.0062	106.2 ± 3.3	106.2 ± 3.3	

			~		
Tabl	e I	. (Con	itin	ued

	²⁰⁶ Pb. ⁽¹⁾	U	Th		222	207	$^{238}\text{U}/^{206}\text{Pb}^*$ age ⁽¹⁾	²³⁸ U/ ²⁰⁶ Pb* age ⁽²⁾	
Labels	(%)	(ppm)	(ppm)	Th/U	$^{238}\text{U}/^{206}\text{Pb}^{*}$ (1)	²⁰⁷ Pb*/ ²⁰⁶ Pb* ⁽¹⁾	(Ma)	(Ma)	Remarks
	(70)	(ppm)	(ppm)				(Ivia)	(1114)	
KKC2 27.1	0.00	312	172	0.57	59.24 ± 1.65	0.0489 ± 0.0043	107.9 ± 3.0	107.8 ± 3.0	
KKC2 28.1	0.00	132	64	0.50	63.94 ± 2.15	0.0462 ± 0.0071	100.0 ± 3.3	100.0 ± 3.3	
KKC2_28.2	0.00	556	190	0.35	56.42 ± 1.17	0.0479 ± 0.0025	1133 ± 23	1133 ± 23	
KKC2_20.2	0.00	271	109	0.33	58.96 ± 1.60	0.0477 = 0.0023 0.0481 ± 0.0040	113.3 = 2.3 108.4 ± 2.9	113.3 = 2.3 108.4 ± 2.9	
KKC2_29.1	0.00	710	252	0.41	53.90 ± 1.00	0.0401 ± 0.0040	103.4 ± 2.9 102.4 ± 2.0	103.4 ± 2.9 102.2 ± 2.0	
KKC2_30.1	0.18	/10	333	0.31	02.43 ± 1.22	0.0492 ± 0.0043	102.4 ± 2.0 107.2 ± 2.0	102.3 ± 2.0	
KKC2_30.2	0.00	231	/8	0.35	59.61 ± 1.67	0.0541 ± 0.0057	$10/.2 \pm 3.0$	106.4 ± 3.1	
KKC2_31.1	0.00	299	101	0.35	55.72 ± 1.44	0.0485 ± 0.0045	114.7 ± 2.9	114.7 ± 3.0	Ν
KKC2_32.1	0.00	320	117	0.38	59.23 ± 1.72	0.0417 ± 0.0043	107.9 ± 3.1	107.9 ± 3.1	
KKC2_33.1	2.15	574	200	0.36	61.29 ± 1.42	0.0394 ± 0.0047	104.3 ± 2.4	105.5 ± 2.4	
KKC2_33.2	0.00	2596	1169	0.46	58.48 ± 0.87	0.0470 ± 0.0014	109.3 ± 1.6	109.3 ± 1.6	
_									
Tamana granod	liorite (TM	[N1])							
TMN1 01 1	0.00	310	123	0.41	60.09 ± 1.66	0.0470 ± 0.0036	1064 ± 2.9	1064 ± 2.9	
TMN1_01.2	0.00	725	548	0.78	61.17 ± 1.00	0.0470 = 0.0030 0.0487 ± 0.0020	100.4 = 2.9 104.5 ± 1.0	100.4 = 2.9 104.5 ± 1.0	
TMN1_01.2	0.00	569	224	0.78	01.17 ± 1.09	0.0487 ± 0.0029 0.0428 ± 0.0029	104.3 = 1.9 106.2 ± 2.0	104.3 ± 1.9 106.2 ± 2.0	
TIMINI_02.1	0.00	308	234	0.42	00.13 ± 1.17	0.0438 ± 0.0029	100.3 ± 2.0 102.2 ± 2.1	100.5 ± 2.0	
IMNI_03.1	0.00	4/8	260	0.56	61.95 ± 1.30	0.0518 ± 0.0037	103.2 ± 2.1	102.7 ± 2.2	
TMN1_03.2	0.10	735	171	0.24	61.19 ± 1.12	0.0465 ± 0.0036	104.5 ± 1.9	104.6 ± 1.9	
TMN1_04.1	0.00	375	249	0.68	58.43 ± 1.24	0.0458 ± 0.0038	109.4 ± 2.3	109.4 ± 2.3	
TMN1 04.2	0.00	506	203	0.41	61.81 ± 1.25	0.0520 ± 0.0035	103.5 ± 2.1	103.0 ± 2.1	
TMN1_05.1	0.44	379	126	0.34	62.08 ± 1.63	0.0432 ± 0.0057	103.0 ± 2.7	103.5 ± 2.7	
TMN1_06_1	0.36	518	239	0.47	59.22 ± 1.31	0.0390 ± 0.0053	107.9 ± 2.4	108.3 ± 2.3	
TMN1_06.2	0.00	372	145	0.40	59.22 + 1.31	0.0370 + 0.0035 0.0415 ± 0.0036	107.5 ± 2.1	107.6 ± 2.6	
TMINI_00.2	0.00	240	259	0.40	39.40 - 1.47	0.0413 ± 0.0030	107.0 ± 2.0 105.0 ± 2.7	107.0 ± 2.0	
TMINI_07.1	1.41	340	238	0.78	00.80 ± 1.50	0.0420 ± 0.0095	105.2 ± 2.7	106.0 ± 2.0	
IMNI_0/.2	0.00	281	87	0.32	61.96 ± 1.5 /	0.0460 ± 0.0041	103.2 ± 2.6	103.2 ± 2.6	
TMN1_08.1	0.24	209	76	0.38	60.83 ± 1.99	0.0492 ± 0.0084	105.1 ± 3.4	105.0 ± 3.4	
TMN1_09.1	0.00	542	170	0.32	58.44 ± 1.35	0.0478 ± 0.0030	109.4 ± 2.5	109.4 ± 2.5	
TMN1 09.2	0.00	472	168	0.36	58.13 ± 1.31	0.0500 ± 0.0034	110.0 ± 2.5	109.7 ± 2.5	
TMN1_10.1	0.00	869	463	0.55	60.50 ± 1.12	0.0549 ± 0.0029	105.7 ± 1.9	104.8 ± 2.0	D. N
TMN1 10.2	0.33	433	166	0.39	57.90 ± 1.44	0.0540 ± 0.0058	110.4 ± 2.7	109.6 ± 2.7	_,
TMN1_11_1	0.00	437	211	0.49	57.68 ± 1.33	0.0376 ± 0.0036	110.1 - 2.7 110.8 + 2.5	109.0 - 2.7 110.8 + 2.5	
TMN1_11.1	0.00	437	177	0.49	57.06 ± 1.55	0.0470 ± 0.0030	110.0 ± 2.5 102.0 ± 2.5	110.0 ± 2.5 101.8 ± 2.5	
TIMINI_11.2	0.23	445	250	0.41	02.14 ± 1.31	0.0308 ± 0.0003	102.9 ± 2.3	101.6 ± 2.5	N
1MN1_12.1	0.00	805	256	0.33	56.89 ± 1.05	0.0512 ± 0.0025	112.3 ± 2.1	111.9 ± 2.1	IN
TMNI_13.1	0.00	221	84	0.39	59.25 ± 1.60	0.0429 ± 0.0055	107.9 ± 2.9	107.9 ± 2.9	
TMN1_13.2	0.00	438	201	0.47	60.45 ± 1.41	0.0491 ± 0.0033	105.8 ± 2.5	105.6 ± 2.5	
TMN1_14.1	0.00	481	581	1.24	23.08 ± 0.39	0.0502 ± 0.0021	273.5 ± 4.5	273.5 ± 4.5	
TMN1 14.2	0.00	559	148	0.27	60.54 ± 1.19	0.0469 ± 0.0030	105.6 ± 2.1	105.6 ± 2.1	
TMN1_15.1	0.00	401	187	0.48	59.37 ± 1.28	0.0484 ± 0.0038	107.7 ± 2.3	107.7 ± 2.4	
TMN1 15 2	1 11	397	172	0.44	58.26 ± 1.42	0.0513 ± 0.0074	109.7 ± 2.7	109.3 ± 2.6	
TMN1_16.1	0.00	231	87	0.38	58.20 + 1.12	0.0588 ± 0.0065	109.7 - 2.7 108.9 + 3.2	107.4 ± 3.3	
TMINI_10.1	1.66	521	225	0.38	56.72 = 1.74	0.0388 ± 0.0003	103.9 ± 3.2 102.7 ± 2.1	107.4 ± 3.3 102.0 ± 2.1	
TIMINI_1/.1	1.00	551	145	0.45	02.29 ± 1.20	0.0433 ± 0.0000	102.7 ± 2.1	103.0 ± 2.1	
1MN1_18.1	0.00	563	145	0.26	61.14 ± 1.32	0.0524 ± 0.0033	104.6 ± 2.2	104.0 ± 2.3	
TMNI_19.1	0.00	419	108	0.26	59.30 ± 1.45	0.0498 ± 0.0043	107.8 ± 2.6	107.6 ± 2.7	
TMN1_20.1	1.45	241	78	0.33	61.50 ± 1.85	0.0348 ± 0.0074	104.0 ± 3.1	105.5 ± 3.1	
TMN1_21.1	0.00	569	298	0.54	57.41 ± 1.33	0.0479 ± 0.0027	111.3 ± 2.5	111.3 ± 2.5	
TMN1 21.2	0.41	266	89	0.35	59.71 ± 1.71	0.0481 ± 0.0078	107.1 ± 3.0	107.1 ± 3.0	
TMN1 ^{22.1}	0.65	1328	813	0.63	58.37 ± 1.12	0.0490 ± 0.0045	109.5 ± 2.1	109.4 ± 2.0	
TMN1 ^{22.2}	0.00	475	169	0.36	56.06 ± 1.29	0.0610 ± 0.0042	114.0 ± 2.6	112.2 ± 2.6	D. N
TMN1 23.1	0.00	741	435	0.60	59.95 ± 1.19	0.0499 ± 0.0029	106.6 ± 2.1	106.4 ± 2.1	2,11
TMN1_24.1	0.00	401	133	0.00	62.14 ± 1.40	0.0439 ± 0.0029	100.0 = 2.1 102.0 ± 2.3	100.4 - 2.1 102.0 + 2.3	
TMNI 25.1	0.00	202	135	0.34	62.14 - 1.40	0.0450 ± 0.0030	102.9 = 2.3 00.0 + 2.6	102.9 ± 2.3 100.2 ± 2.6	
TIMINI_25.1	0.40	305	143	0.49	04.00 ± 1.71	0.0430 ± 0.0077	99.9 ± 2.0	100.2 ± 2.0	
TIVINI_25.2	0.01	354	133	0.39	02.43 ± 1.42	0.0482 ± 0.0059	102.4 ± 2.3	102.4 ± 2.3	
1 MIN1_26.1	0.00	451	155	0.35	59.80 ± 1.23	0.0426 ± 0.0032	106.9 ± 2.2	106.9 ± 2.2	
TMN1_27.1	0.00	799	469	0.60	60.77 ± 1.08	0.0484 ± 0.0025	105.2 ± 1.9	105.2 ± 1.9	
TMN1_28.1	0.17	1040	541	0.53	61.75 ± 1.07	0.0499 ± 0.0040	103.6 ± 1.8	103.3 ± 1.8	
TMN1_29.1	0.00	972	761	0.80	63.71 ± 1.07	0.0499 ± 0.0025	100.4 ± 1.7	100.2 ± 1.7	Ν
TMN1 ^{29.2}	0.00	386	141	0.37	62.29 ± 1.57	0.0569 ± 0.0037	102.7 ± 2.6	101.5 ± 2.6	D, N
TMN1_30.1	0.00	168	45	0.27	63.62 ± 2.09	0.0436 ± 0.0056	100.5 ± 3.3	100.5 ± 3.3	
TMN1 31.1	0.21	622	307	0.51	64.07 ± 1.35	0.0476 ± 0.0052	99.8 ± 2.1	99.9 ± 2.1	Ν
TMN1 31 2	0.00	720	210	0.21	60.25 ± 1.12	0.0510 ± 0.0032	106.1 ± 2.0	105.7 ± 2.1	- 1
TMN1 22.1	0.09	1700	1921	1.04	60.23 - 1.12	0.0510 ± 0.0044 0.0512 \pm 0.0020	100.1 - 2.0 105.2 + 1.6	103.7 ± 2.0 104.0 ± 1.7	
TIVIINI_32.1	0.00	1/99	1821	1.04	00.71 ± 0.90	0.0312 ± 0.0020	103.3 ± 1.0	104.9 ± 1.7	
1 MIN1_32.2	0.56	351	110	0.32	60.97 ± 1.53	0.0421 ± 0.0059	104.9 ± 2.6	105.5 ± 2.6	
TMN1_33.1	0.00	545	193	0.36	59.58 ± 1.16	0.0506 ± 0.0036	107.3 ± 2.1	107.0 ± 2.1	
TMN1_34.1	0.47	245	115	0.48	60.64 ± 1.76	0.0435 ± 0.0089	105.4 ± 3.0	105.9 ± 2.9	
TMN1_34.2	0.03	534	131	0.25	58.16 ± 1.20	0.0489 ± 0.0042	109.9 ± 2.2	109.8 ± 2.3	
TMN1 ^{35.1}	0.00	376	197	0.54	60.60 ± 1.48	0.0535 ± 0.0042	105.5 ± 2.6	104.8 ± 2.6	
TMN1 35.2	0.00	483	143	0.30	61.98 ± 1.31	0.0497 ± 0.0034	103.2 ± 2.2	103.0 ± 2.2	
TMN1 36.1	0.00	708	300	0.43	62.31 ± 1.30	0.0491 ± 0.0034	102.6 ± 2.1	102.0 - 2.2 102.5 + 2.2	
TMN1 26.2	0.00	225	04	0.70	60.74 ± 1.30	0.0771 - 0.0029 0.0420 + 0.0044	102.0 - 2.1 105.2 + 2.5	102.3 ± 2.2 105.2 ± 2.5	
TIVIINI_30.2	0.00	222	90	0.29	00.74 ± 1.48	0.0420 ± 0.0044	103.3 ± 2.3 107.2 ± 2.9	103.3 ± 2.3 107.0 ± 2.9	
1 MIN1_5/.1	1.5/	270	82	0.31	$39.3 / \pm 1.3 /$	0.0435 ± 0.0076	107.3 ± 2.8	107.9 ± 2.8	
TMN1_38.1	0.00	99	106	1.10	60.84 ± 2.39	0.0603 ± 0.0103	105.1 ± 4.1	103.5 ± 4.3	
TMN1_38.2	0.46	386	148	0.39	59.33 ± 1.52	0.0459 ± 0.0060	107.8 ± 2.7	108.1 ± 2.7	
Tamana granod	liorite (TM	[N2)							
TMN2 01.1	0.00	392	146	0.38	60.31 ± 1.17	0.0488 ± 0.0034	106.0 ± 2.0	105.9 ± 2.1	

Y. Tsutsumi

Table 1. Continued

	206 ph (1)	IJ	Th				238L1/206Pb* age (1)	238L1/206 Pb* age (2)	
Labels	(%)	(ppm)	(ppm)	Th/U	²³⁸ U/ ²⁰⁶ Pb* ⁽¹⁾	²⁰⁷ Pb*/ ²⁰⁶ Pb* ⁽¹⁾	(Ma)	(Ma)	Remarks
T) () 1 2	0.00	(227	(PPIII)	0.20	(4.20 + 1.40	0.0472 + 0.0025	00.5 + 2.2	00.5 + 2.2	
TMN2_01.2 TMN2_02_1	0.00	337 477	98 231	0.30	64.28 ± 1.48 60.50 ± 1.16	$0.04/2 \pm 0.0035$ 0.0523 ± 0.0032	99.5 ± 2.3 105.7 ± 2.0	99.5 ± 2.3 105.1 ± 2.0	
TMN2_03.1	0.89	345	155	0.46	43.86 ± 1.05	0.0323 ± 0.0032 0.0403 ± 0.0058	105.7 ± 2.0 145.3 ± 3.4	105.1 = 2.0 146.6 ± 3.4	Ν
TMN2_03.2	0.76	254	88	0.35	59.23 ± 1.39	0.0448 ± 0.0055	107.9 ± 2.5	108.4 ± 2.5	
TMN2_04.1	0.27	569	250	0.45	63.48 ± 1.30	0.0476 ± 0.0045	100.8 ± 2.0	100.8 ± 2.0	
TMN2_04.2	0.00	201	67	0.34	62.11 ± 1.84	0.0492 ± 0.0050	103.0 ± 3.0	102.8 ± 3.1	
1 MN2_05.1	0.00	907	617	0.70	59.25 ± 1.06	0.0495 ± 0.0026	$10/.9 \pm 1.9$ 108.0 ± 2.5	$10/.7 \pm 1.9$ 100.4 ± 2.5	
TMN2_00.1	2.01	299	148	0.41	58.70 ± 1.58 59.20 ± 1.40	0.0448 ± 0.0062 0.0545 ± 0.0066	108.9 ± 2.3 108.0 ± 2.5	109.4 ± 2.3 107.1 ± 2.5	
TMN2_07.2	0.86	354	139	0.40	59.54 ± 1.52	0.0343 ± 0.0000 0.0382 ± 0.0057	100.0 ± 2.0 107.4 ± 2.7	107.1 ± 2.5 108.3 ± 2.7	
TMN2_08.1	0.00	293	116	0.41	54.58 ± 1.34	0.0526 ± 0.0047	117.0 ± 2.8	116.4 ± 2.9	Ν
TMN2_08.2	0.00	370	141	0.39	58.74 ± 1.13	0.0492 ± 0.0043	108.8 ± 2.1	108.7 ± 2.2	
TMN2_09.1	0.60	1053	448	0.44	59.99 ± 1.13	0.0474 ± 0.0040	106.6 ± 2.0	106.7 ± 2.0	
TMN2_10.1	0.08	638 470	320 214	0.51	58.78 ± 1.06 62.41 ± 1.11	$0.0454 \pm 0.004 /$ 0.0476 ± 0.0034	108.7 ± 1.9 102.5 ± 1.8	108.8 ± 1.9 102.5 ± 1.8	
TMN2_11.1 TMN2_12_1	0.00	352	114	0.40	55.13 ± 1.28	0.0470 ± 0.0034 0.0465 ± 0.0034	102.3 ± 1.3 115.9 ± 2.7	102.3 ± 1.8 1159 ± 27	N
TMN2_13.1	0.64	379	196	0.53	61.31 ± 1.26	0.0598 ± 0.0064	113.9 ± 2.1 104.3 ± 2.1	113.9 ± 2.1 102.8 ± 2.1	14
TMN2_14.1	0.08	322	140	0.45	60.90 ± 1.50	0.0482 ± 0.0062	105.0 ± 2.6	105.0 ± 2.6	
TMN2_15.1	0.42	718	509	0.73	59.95 ± 1.01	0.0450 ± 0.0052	106.6 ± 1.8	107.1 ± 1.8	
TMN2_16.1	0.00	703	575	0.84	60.87 ± 1.07	0.0489 ± 0.0026	105.0 ± 1.8	104.9 ± 1.9	
TMN2_16.2	0.29	443	261	0.60	60.19 ± 1.27	0.0492 ± 0.0062	106.2 ± 2.2 105.7 ± 2.0	106.1 ± 2.2 105.2 ± 2.0	
TMN2_17.1	0.00	048 465	218	0.81	60.51 ± 1.10 61.01 ± 1.32	0.0309 ± 0.0031 0.0399 ± 0.0075	105.7 ± 2.0 104.8 ± 2.3	105.3 ± 2.0 105.9 ± 2.2	
TMN2_18.2	0.00	796	560	0.72	59.75 ± 1.15	0.0399 ± 0.0073 0.0497 ± 0.0028	104.8 ± 2.3 107.0 ± 2.0	105.9 ± 2.2 106.8 ± 2.1	
TMN2_19.1	0.32	289	103	0.37	60.21 ± 1.65	0.0488 ± 0.0066	106.2 ± 2.9	106.0 ± 2.9	
TMN2_19.2	0.00	596	307	0.53	61.46 ± 1.19	0.0499 ± 0.0033	104.0 ± 2.0	103.8 ± 2.0	
TMN2_20.1	0.91	400	131	0.34	53.65 ± 1.36	0.0406 ± 0.0054	119.1 ± 3.0	120.1 ± 3.0	Ν
TMN2_20.2	0.86	356	90	0.26	61.59 ± 1.62	0.0450 ± 0.0063	103.8 ± 2.7	104.2 ± 2.7	
TMN2_21.1	0.00	122	415	0.59	61.54 ± 1.27 57.46 ± 1.22	0.0465 ± 0.0024	103.9 ± 2.1	103.9 ± 2.1	
TMN2_21.2	0.00	427 829	179	0.55	57.40 ± 1.22 59.31 ± 1.11	0.0496 ± 0.0034 0.0491 ± 0.0025	111.2 ± 2.3 107.8 ± 2.0	111.0 ± 2.4 107.7 ± 2.0	
TMN2_22.2	0.00	353	177	0.51	59.40 ± 1.50	0.0491 = 0.0023 0.0466 ± 0.0038	107.6 ± 2.7	107.6 ± 2.7	
TMN2 ^{23.1}	0.00	404	174	0.44	61.17 ± 1.36	0.0526 ± 0.0041	104.5 ± 2.3	103.9 ± 2.4	
TMN2_24.1	0.00	398	137	0.35	63.20 ± 1.47	0.0447 ± 0.0034	101.2 ± 2.3	101.2 ± 2.3	
TMN2_25.1	0.00	743	269	0.37	56.26 ± 1.15	0.0492 ± 0.0026	113.6 ± 2.3	113.4 ± 2.3	Ν
TMN2_25.2	0.00	346	93	0.28	60.07 ± 1.44	0.0530 ± 0.0047	106.4 ± 2.5	105.8 ± 2.6	
1 MIN2_26.1 TMN2_27.1	0.57	389 775	141	0.37	59.62 ± 1.56 62.14 ± 1.17	0.0466 ± 0.0052 0.0489 ± 0.0029	$10/.2 \pm 2.8$ 102.9 ± 1.9	$10/.4 \pm 2.8$ 102.8 ± 2.0	
TMN2_27.1 TMN2_28.1	0.00	601	112	0.30	54.69 ± 1.17	0.0489 ± 0.0029 0.0482 ± 0.0029	102.9 ± 1.9 116.8 ± 2.3	102.8 ± 2.0 116.8 ± 2.3	N
TMN2 29.1	0.00	793	470	0.61	63.09 ± 1.36	0.0601 ± 0.0025	101.4 ± 2.2	99.9 ± 2.1	D, N
TMN2_30.1	0.00	774	468	0.62	61.47 ± 1.16	0.0550 ± 0.0029	104.0 ± 2.0	103.1 ± 2.0	D, N
TMN2_30.2	0.28	324	127	0.40	60.06 ± 1.60	0.0361 ± 0.0060	106.4 ± 2.8	106.7 ± 2.7	
TMN2_31.1	0.00	338	129	0.39	59.70 ± 1.34	0.0645 ± 0.0047	107.1 ± 2.4	104.9 ± 2.4	D, N
TMN2_32.1	0.47	789	214	0.28	62.00 ± 1.24	0.0467 ± 0.0041	103.1 ± 2.1	103.3 ± 2.0	
1 MIN2_32.2	0.00	309	139	0.39	59.80 ± 1.36	$0.04/3 \pm 0.0034$	100.9 ± 2.4	100.9 ± 2.4	
Tsutsugatake gi	ranite (TGT	1)							
TGT1_01.1	0.00	704	500	0.73	57.83 ± 0.98	0.0430 ± 0.0027	110.5 ± 1.8	110.5 ± 1.8	
TGT1_01.2	0.07	1427	281	0.20	61.17 ± 1.03	0.0469 ± 0.0023	104.5 ± 1.7	104.6 ± 1.7	
TGT1_02.1	0.00	593	415	0.72	59.74 ± 1.13	0.0448 ± 0.0029	107.0 ± 2.0 102.1 ± 2.6	$10/.0 \pm 2.0$ 102.5 ± 2.6	
TGT1_03.1 TGT1_04_1	0.49	568	374	0.52	60.00 ± 1.39	0.0443 ± 0.0003 0.0442 ± 0.0027	105.1 ± 2.0 106.6 ± 2.2	105.5 ± 2.0 106.6 ± 2.2	
TGT1_05.1	0.00	488	239	0.50	59.64 ± 1.26	0.0442 ± 0.0027 0.0461 ± 0.0033	100.0 ± 2.2 107.2 ± 2.3	100.0 ± 2.2 107.2 ± 2.3	
TGT1_06.1	0.00	690	288	0.43	61.27 ± 1.07	0.0510 ± 0.0033	104.4 ± 1.8	104.0 ± 1.9	
TGT1_06.2	0.14	2070	128	0.06	60.26 ± 0.83	0.0488 ± 0.0019	106.1 ± 1.5	106.0 ± 1.5	
TGT1_07.1	0.89	287	173	0.62	62.87 ± 1.74	0.0445 ± 0.0081	101.7 ± 2.8	102.2 ± 2.7	
TGT1_07.2	0.00	950 721	167	0.18	62.57 ± 1.02	0.0461 ± 0.0020	102.2 ± 1.6 102.2 ± 1.0	102.2 ± 1.6 102.6 ± 1.0	
TGT1_00.1	0.38	116	221 81	0.31	62.37 ± 1.20 62.94 ± 2.65	0.0448 ± 0.0049 0.0577 ± 0.0093	102.2 ± 1.9 101.6 ± 4.2	102.0 ± 1.9 100.4 ± 4.4	
TGT1_09.1	0.65	462	178	0.39	60.89 ± 1.30	0.0377 ± 0.0093 0.0457 ± 0.0056	101.0 ± 4.2 105.0 ± 2.2	100.4 ± 4.4 105.3 ± 2.2	
TGT1 10.2	0.22	445	138	0.32	60.20 ± 1.45	0.0507 ± 0.0049	106.2 ± 2.5	105.9 ± 2.5	
TGT1_11.1	0.00	2036	1073	0.54	58.27 ± 0.87	0.0477 ± 0.0016	109.7 ± 1.6	109.7 ± 1.6	
TGT1_11.2	0.19	688	111	0.17	59.11 ± 1.11	0.0458 ± 0.0032	108.1 ± 2.0	108.3 ± 2.0	
TGT1_12.1	0.07	661	393	0.61	57.65 ± 1.08	0.0423 ± 0.0048	110.9 ± 2.1	110.9 ± 2.0	
TGT1_14_1	0.69	330 122	412	1.19	02.11 ± 1.79 61.01 + 2.22	0.0404 ± 0.010^{7}	103.0 ± 2.9 104.8 ± 2.9	103.7 ± 2.7 104.4 ± 2.0	
TGT1_14.1	0.00	133 74	90 60	0.70	60.17 ± 2.22	0.0314 ± 0.0083 0.0400 + 0.0102	104.0 ± 3.0 106.3 ± 5.2	104.4 ± 3.9 107.0 ± 4.8	
TGT1 16 1	0.00	109	82	0.82	60.92 ± 2.57	0.0409 ± 0.0192 0.0409 ± 0.0073	105.0 ± 4.4	107.0 ± 4.0 105.0 ± 4.4	
TGT1 17.1	0.00	119	72	0.62	60.05 ± 2.04	0.0539 ± 0.0079	106.5 ± 3.6	105.7 ± 3.7	
TGT1_17.2	0.19	703	139	0.20	57.28 ± 1.01	0.0460 ± 0.0036	111.6 ± 2.0	111.8 ± 1.9	Ν
TGT1_18.1	0.70	602	221	0.38	60.39 ± 1.10	0.0470 ± 0.0052	105.9 ± 1.9	106.0 ± 1.9	
TGT1_18.2	0.43	2220	648	0.30	61.29 ± 0.97	0.0496 ± 0.0023	104.3 ± 1.6	104.1 ± 1.6	
TGT1_19.1	0.03	828 654	541 256	0.42	58.85 ± 1.03 59.10 + 1.12	0.0481 ± 0.0039 0.0436 ± 0.0042	108.6 ± 1.9 108.0 ± 2.0	108.6 ± 1.9 108.0 ± 2.0	
1011_20.1	0.01	0.04	230	0.40	37.17 ± 1.12	0.0750 ± 0.0042	100.0 - 2.0	100.0 - 2.0	

Labels	²⁰⁶ Pb _c ⁽¹⁾ (%)	U (ppm)	Th (ppm)	Th/U	²³⁸ U/ ²⁰⁶ Pb* ⁽¹⁾	²⁰⁷ Pb*/ ²⁰⁶ Pb* (1)	²³⁸ U/ ²⁰⁶ Pb* age ⁽¹⁾ (Ma)	²³⁸ U/ ²⁰⁶ Pb* age ⁽²⁾ (Ma)	Remarks
TGT1 21.1	0.02	446	103	0.24	57.76 ± 1.29	0.0508 ± 0.0051	110.7 ± 2.4	110.3 ± 2.5	
TGT1_22.1	0.00	380	184	0.50	61.68 ± 1.41	0.0436 ± 0.0033	103.7 ± 2.3	103.7 ± 2.3	
TGT1_23.1	0.40	119	105	0.91	56.76 ± 2.22	0.0497 ± 0.0151	112.6 ± 4.4	112.4 ± 4.2	
TGT1_24.1	0.01	360	119	0.34	60.14 ± 1.34	0.0539 ± 0.0056	106.3 ± 2.3	105.6 ± 2.3	
TGT1_24.2	0.00	2104	678	0.33	60.97 ± 0.86	0.0465 ± 0.0013	104.9 ± 1.5	104.9 ± 1.5	
TGT1_25.1	0.42	420	129	0.32	60.14 ± 1.29	0.0532 ± 0.0051	106.3 ± 2.3	105.6 ± 2.3	
TGT1_26.1	0.00	110	74	0.69	55.51 ± 2.01	0.0294 ± 0.0053	115.1 ± 4.1	115.1 ± 4.1	D, N
TGT1_27.1	0.00	112	103	0.95	63.95 ± 2.27	0.0573 ± 0.0074	100.0 ± 3.5	98.9 ± 3.6	

Table 1. Continued

Errors are 1-sigma; Pb, and Pb^{*} indicate the common and radiogenic portions, respectively.

Remarks; D: discordant, N: not used for weighted mean age calculation

Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁸Pb/²³²Th age-concordance
Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U age-concordance

Fig. 3. Morphological secondary electron (SE) images before cement in resin and cathodoluminescence (CL) images of analyzing section of typical zircon grains from the samples. Circles on the images point to analyzed spots by LA-ICP-MS which diameter are 25 μ m approx.

National Museum of Nature and Science (http:// db.kahaku.go.jp/webmuseum en/).

KKC1: Kikuchi granite

The sample was collected from north of Lake Hanjaku in the northeastern part of Kikuchi City (lat: N 33°03'32.0", long: E 130°52'29.0"). This is a medium to coarse grained granite. The major minerals of this rock are quartz, plagioclase, alkali feldspar, biotite, and muscovite. Plagioclase occurs as euhedral to subhedral crystal and exhibits indistinct albite twin and oscillatory zoning. Biotite is partly altered into chlorite. Undulatory extinction is observed in quartz. Zircon and opaque mineral are common accessory minerals. The registration number is 137666.

Most zircon grains are 150 to 300 μ m in length, partly rounded with elongation ratio of 1.8 to 3.3.

Fig. 4. Tera-Wasserberg U-Pb concordia diagrams and age distribution plot of zircons from the samples.

Their CL images are relatively bright with distinct oscillatory and/or sector zoning. 42 spots from 33 grains were analyzed and the weighted mean age of 41 concordant data indicate 106.6 ± 0.9 Ma (1 datum rejected; MSWD = 1.7).

KKC2: Kikuchi granite

The sample was collected from east of Happogatake in the eastern part of Yamaga City (lat: N33°03'32.0", long: E 130°47'29.3"). This is a medium grained granite. Microscopic observation is similar to KKC1. The registration number is 137668.

Most zircon grains are 180 to 350 μ m in length

with prismatic and elongation ratio from 1.8 to 4.0. CL image of the zircons are relatively bright with distinct oscillatory zoning. Although some darker CL cores were observed, there are no age differences beyond the error range. 39 spots from 33 grains were analyzed and 38 data are concordant. After an older datum was excluded, the weighted mean age of 37 data indicates 105.7 ± 1.2 Ma (2 data are rejected; MSWD = 2.4).

TMN1: Tamana granodiorite

The sample was collected from the left side bank of the Hazama River, downstream of the Ryumon Dam (lat: N $33^{\circ}02'05.4''$, long: E $130^{\circ}50'51.0''$).

Fig. 5. Probability distribution diagrams and histogram of zircon ages in the samples.

This is a coarse grained granodiorite. The major minerals of this rock are plagioclase, quartz, biotite and amphibole. Plagioclase occurs as euhedral to subhedral crystal and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. Zircon and opaque mineral are common accessory minerals. The registration number is 137667.

Most zircon grains are 150 to 240 μ m length with prismatic and elongation ratio from 1.5 to 3.5. CL images are relatively bright with distinct oscillatory zoning. 59 spots from 38 grains were analyzed and 56 data are concordant. After 1 older datum was excluded, the weighted mean age of all concordant data indicates 105.7 \pm 0.7 Ma (3 data rejected; MSWD = 1.2).

TMN2: Tamana granodiorite

The sample was collected from the western end part of Yamaga City (lat: N 32°58'40.9", long: E 130°38'30.3"). This is a medium to coarse grained granodiorite. Microscopic observation is similar to TMN1. The registration number is 137670.

Most zircon grains are 150 to 300 μ m length with prismatic and elongation ratio from 2.0 to 3.9. CL images are relatively bright with distinct oscillatory zoning. 48 spots from 27 grains were analyzed and 43 data are concordant. After 5 older data were excluded, the weighted mean age of all 38 data indicates 105.5 \pm 0.9 Ma (MSWD = 1.3).

TGT1: Tsutsugatake granite

The sample was collected from the northeastern foot of Mt. Tsutsugatake (lat: N 32°59'41.8", long: E 130°32'08.8"). This is a medium to coarse grained granite. The major minerals of this rock are quartz, plagioclase, alkali feldspar, biotite and muscovite. Plagioclase occurs as euhedral to subhedral crystal and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. Zircon and opaque mineral are common accessory minerals. The registration number is 137671.

Most zircon grains are 150 to 280 μ m length with prismatic and elongation ratio from 1.8 to 4.2. CL images are relatively bright with distinct oscillatory zoning. 35 spots from 27 grains were analyzed and 34 data are concordant. The weighted mean age of all concordant data indicates 106.0 ± 1.0 Ma (1 datum rejected; MSWD = 1.6).

Discussion

Because of the high closure temperature of the decay system and the robust nature of zircon, U–Pb age is commonly interpreted to indicate the plutonic age of granitoids. In Chikuhi area, the zircon U–Pb ages of samples in this study and an age previously reported (Miyazaki *et al.*, 2018) are well-concentrated in a narrow range from 106.6 to 105.5 Ma. There is no relationship between zircon U–Pb ages and the classification of "older" or "younger" granitoids. It is thought that the plutonism in the Chikuhi area was concentrated in ca. 106 Ma. The WR Rb–Sr ages previously reported by Osanai *et al.* (1993) of the study area are 121.3 \pm 8.4 and 116.8 \pm 12.7 Ma. Present zircon U–Pb ages are in a range of their high 2σ data errors.

Zircon U–Pb ages of granitoids in the Higo belt, southern part of the central Kyushu, concentrated in

sample name	registration	locality	rook body		n of data	A go	MSWD	
	No. ¹⁾	locality	TOCK DODy -	All	Conc.	Calc.	Age	MS WD
KKC1	137666	N33°03'32.0"E130°52'29.0"	Kikuchi granite	42	41	40	106.6 ± 0.9	1.7
KKC2	137668	N33°03'32.0"E130°47'29.3"	Kikuchi granite	39	38	35	105.7 ± 1.2	2.4
TMN1	137667	N33°02'05.4"E130°50'51.0"	Tamana granodiorite	59	56	52	105.7 ± 0.7	1.2
TMN2	137670	N32°58'40.9"E130°38'30.3"	Tamana granodiorite	46	43	37	105.5 ± 0.9	1.3
TGT1	137671	N32°59'41.8"E130°32'08.8"	Tsutsugatake granite	35	34	33	106.0 ± 1.0	1.6

Table 2. Summaries of localities and weighted mean ages of each sample.

Age errors are 95% conf.; Conc.: concordant, Calc.: used for age calculation.

1) The number of rock specimen in the collection database of the National Museum of Nature and Science (http://db. kahaku.go.jp/webmuseum_en/).

113–108 Ma (Nagata and Otoh, 2021 and references therein). In contrast, zircon U–Pb ages of northern Kyushu, northern than Matsuyama-Imari Tectonic line, mainly range from 105–98 Ma (Adachi *et al.*, 2012; Yuhara *et al.*, 2019; Miyazaki *et al.*, 2018). Granitoids in the Chikuhi area indicate zircon U–Pb ages of ca. 106 Ma which is intermediate between Higo belt and northern Kyushu areas. The trend in zircon age data is more noticeable than in WR data, i.e. Cretaceous granitoid in Kyushu roughly becomes younger northward.

Acknowledgment

I wish to thank to Dr. K. Yokoyama of the Ibaraki Nature Museum for helpful comments and editorial assistance on the preparation of the manuscript. The author thanks Ms. Y. Kusaba of the National Museum of Nature and Science for her help in SEM analysis. I wish to thank to K. Tani of the National Museum of Nature and Science for their help in sample description and discussion. This work is conducted as a part of the project "Interpreting geological meanings of granitoids in southwest Japan" of the National Museum of Nature and Science.

References

- Adachi, T., Osanai, Y., Nakano, N. and Owada, M. (2012) LA-ICP-MS U–Pb zircon and FE-EPMA U–Th–Pb monazite dating of pelitic granulites from the Mt. Ukidake area, Sefuri Mountains, northern Kyushu. *Journal of the Geological Society of Japan*, **118**: 39–52 (in Japanese with English abstract).
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S. and Foudoulis, C. (2004). Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope

documentation for a series of zircon standards. *Chemical Geology*, **205**: 115–140.

- Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P. (2003) An atlas of zircon textures. In: Hanchar, J.M. and Hoskin, P.W.O. (Ed.), *Zircon: Reviews in Mineralogy and Geochemistry* 53, Mineralogical Society of America, Washington D.C., USA, 469–500.
- Hoshizumi, H., Ozaki, M., Miyazaki, K., Matsuura, H., Toshimutsu, S., Uto, K., Uchiumi, S., Komazawa, M., Hiroshima, T. and Sudo, S. (2004) *Geological map of Japan1:200000, Kumamoto*, Geological Survey of Japan, Tsukuba, Japan (in Japanese with English abstract).
- Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K. (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. *Island Arc*, **22**: 382– 394.
- Kamei, A. (2002) Petrogenesis of Cretaceous peraluminous granite suites with low initial Sr isotopic ratios, Kyushu Island, southwest Japan arc. *Gondwana Research*, **5**: 813–822.
- Kamei, A., Miyake, Y., Owada, M. and Kimura, J. (2009) A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. *Lithos*, **112**: 615–625.
- Kamei, A. and Osanai, Y. (2010) Cretaceous in the middle part. In: Geological Society of Japan (Ed.), *Monograph* on Geology of Japan, Vol. 8, Kyushu and Okinawa, Asakura Publishing, Tokyo, Japan, 311–317 (in Japanese)*.
- Ludwig, K.R. (2012) Isoplot 3.75–4.15: a geochronological toolkit for Microsoft Excel. In: Berkeley Geochronology Center Special Publication, Berkeley, California.
- Miyazaki, K., Ikeda, T., Matsuura, H., Danhara, T., Iwano, H. and Hirata, T. (2018) Ascent of migmatites of a high-temperature metamorphic complex due to buoyancy beneath a volcanic arc: a mid-Cretaceous example from the eastern margin of Eurasia. *International Geology Review*, **61**: 649–674.
- Moorbath, S. (1975) Evolution of Precambrian crust from strontium isotopic evidence. *Nature*, **254**: 395–398.
- Nagata, M. and Otoh, S. (2021) The U–Pb zircon dates from the Maeshima Granodiorite in Amakusa City, Kumamoto Prefecture, southwest Japan. *Journal of the Geological Society of Japan*, **127**: 237–243 (in Japanese with English)

abstract).

- Osanai, Y., Masao, S. and Kagami, H. (1993) Rb–Sr whole rock isochron ages of granitic rocks from the central Kyushu, Japan. *Memoirs of the Geological Society of Japan*, 42: 135–150 (in Japanese with English abstract).
- Owada, M., Kamei, A., Yamamoto, K., Osanai, Y. and Kagami, H. (1999) Spatial-temporal variations and origin of granitic rocks from central to northern part of Kyushu. *Memoirs of the Geological Society of Japan*, **53**: 349–363 (in Japanese with English abstract).
- Roddick, J.C. and Compston, W. (1977) Strontium isotopic equilibration: A solution to a paradox. *Earth and Planetary Science Letters*, 34: 238–246.
- Sasada, M. (1987) Pre-Tertiary basement rocks of Hohi area, central Kyushu, Japan. Bulletin of Geological Survey of Japan, 38: 385–422.
- Stacey, J.S. and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, **26**: 207–221.
- Tomita, S., Shimoyama, S., Matsuura, H., Miyazaki, K., Ishibashi, K., and Miki, T. (2008) *Geology of the Omuta district, quadrangle series, 1:50000.* Geological Survey of Japan, AIST, Tsukuba, Japan (in Japanese with English abstract).

- Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., Momma, K., Matsubara, S., Shigeoka, M. and Yokoyama, K. (2012) LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, Central Japan. *Bulletin of the National Museum of Nature and Science, Series C*, **38**: 15–32.
- Tunheng, A and Hirata, T. (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. *Journal of Analyti*cal Atomic Spectrometry, 7: 932–934.
- Williams, I.S. (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.P. and Ridley, W.I. (Ed.), *Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology 7*, Society of Economic Geologists, Littleton, CO. USA, 1–35.
- Yuhara, M., Kamei, A., Kawano, Y., Okano, O, Hayasaka, Y. and Kagami, H. (2019) U–Pb zircon ages and Sr and Nd isotope compositions of the Soeda Granodiorite, northern Kyushu, Southwest Japan. *Journal of the Geological Society of Japan*, **15**: 405–420 (in Japanese with English abstract).
- *English translation from the original written in Japanese.