Middle Devonian tabulate corals from the Kamiarisu Formation, Iwate Prefecture, Japan

Shuji Niko

Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, 1–7–1 Kagamiyama, Higashihiroshima, Hiroshima 739–8521, Japan

Abstract A coral fauna was discovered from the lowest part of the Kamiarisu Formation in Iwate prefecture, Northeast Japan. Among the faunal constituents, two species of pachyporid tabulate corals, \textit{Gracilopora} \textit{?} sp. indet. and \textit{Thamnopora sumitaensis} sp. nov., are described herein. The new species is diagnosed by its relatively slender corallites, abundant mural pores, well-developed septal spines in peripheral stereozone, and commonly developed tabulae. On the basis of similarities between the species and such previously known taxa as \textit{Thamnopora itoae} Niko, Ibaraki and Tazawa, 2014, \textit{T. nicholsoni} (Frech, 1885), and \textit{T. siavis} Dubatolov in Dubatolov et al., 1959, the fauna is considered to be of Middle Devonian (probably Givetian) age. Co-occurrence of \textit{Gracilopora} \textit{?} sp. indet. will not contradict this conclusion. Although the Kamiarisu Formation has been assigned to the Silurian, its age should be changed upwardly by this new finding.

Key words: pachyporid tabulate corals, \textit{Gracilopora}, \textit{Thamnopora}, Givetian, Southern Kitakami Belt, Northeast Japan

Introduction

During the field work in May, 2017, an abundant coral fauna was discovered from the Kamiarisu Formation (Tazawa \textit{et al.}, 1984) belonging within the Southern Kitakami Belt, Northeast Japan. This discovery represents the first record of fossil corals from the formation. Among the constituents of this fauna, the present paper focuses on relatively well-preserved tabulate corals and discusses their stratigraphic significance. Two localities from which the material was taken are in the Kamiarisu area of Sumita-cho, Kesen-gun, Iwate Prefecture (Figure 1). Locality 1 occurs at latitude 39°15′9″N and longitude 141°41′43″E, where a forest road cuts fossiliferous shale. Except for tabulates, fossils in this outcrop are rugose corals, brachiopods, and bryozoans. Locality 2 occurs at latitude 39°15′17″N and longitude 141°41′44″E, where shale and intercalates of thin sandstone layers are exposed on stream bank near the junction of the Tuchikura-zawa and Kannonzawa Valleys. The both rocks of Locality 2 yielded rich fossils including brachiopods, bryozoans and crinoids, but tabulates were obtained only from sandstone. Rugose corals were not detected in this locality. Judging from north-south to N 5°E strikes with nearly vertical dips of the shales and the absence of disturbed stratification by fault between locality 1 and 2, these two localities probably situate the same stratigraphic horizon that represents the lowest part of the Kamiarisu Formation (Figure 2).

All specimens examined in this study are prefixed NSMS and housed in National Museum of Nature and Science, Tokyo.

Systematic Paleontology

Subclass Tabulata Milne-Edwards and Haime, 1850
Order Favositida Wedekind, 1937
Suborder Favositina Wedekind, 1937
Superfamily Pachyporidae Gerth, 1921
Family Pachyporidae Gerth, 1921
Genus \textit{Gracilopora} Chudinova, 1964
Type species: \textit{Gracilopora acuta} Chudinova, 1964.

\textit{Gracilopora} \textit{?} sp. indet.
(Figs. 3-A, B)

Material examined: NMNS PA18684.
Description: A single internal mold was available for study; it is ramose corallum formed by cylindri-
cal branches; branching frequent and probably bifurcate; branches slender, approximately 2–3 mm in diameter, and composed by numerous and gradually inflated corallites; diameters of corallites are very small, up to 0.5 mm; each corallite differentiated into proximal narrowly divergent portion and distal outwardly curved one; calical opening is perpendicular to branch surface.

Occurrence: Locality 1.

Discussion: The present corallum is tentatively placed in *Gracilopora* on the basis of the possessions of slender branches composed by numerous corallites having very small diameters. Its corallite morphology also is suggestive of *Egosiella* Dubatolov in Sokolov, 1955, but the Kamiarisu specimen does not show anastomoses of adjoining branches that are the most diagnostic features of the latter genus.

Genus Thamnopora Steininger, 1831

Type species: *Thamnopora madreporacea* Steininger, 1831.
Thamnopora sumitaensis sp. nov.
(Figs. 3-C–K)

Material examined: Holotype, NMNS PA18654. Paratypes, NMNS PA18649–18653, 18655–18663. In addition, 20 specimens, NMNS PA18664–18683, were also assigned to this species.

Diagnosis: Species of *Thamnopora* with 5–12 mm in usual diameters of branches and relatively slender corallites having diameters of 0.2–2.1 mm; intercorallite walls attain approximately 0.8 mm in thickness; mural pores abundant; short conical septal spines well-developed in peripheral stereozone; tabulae common.

Description: Coralla ramose with cylindrical to rarely foliose branches, cerioid; branching common, bifurcate or trifurcate; diameters of branches are relatively slender for the genus, 5–12 mm in cylindrical one; corallum diameter and growth form are unknown owing to fragile nature. Corallites prismatic, mostly 4–6 sided; there are approximately 50–70 corallites in transverse section of branch; each corallites differentiated into proximal portion that runs nearly parallel with branch axis and outwardly curved distal one; inflation of corallite is gradual in proximal and relatively rapid in distal portions; diameters of corallites 0.2–2.1 mm, with 1.7 mm mean at calical rim; calices open obliquely upward with approximately 40°–75° in angle for branch surface; calical pits very deep; lateral increases of new corallites frequently occur in axial zone of branch. Intercorallite walls weakly thickened, 0.13–0.21 mm in axial zone, then they increase in thickness up to approximately 0.8 mm and form indistinct peripheral stereozone; walls consist of median dark line and stereoplasm; micro-structure of stereoplasm is not preserved; tabularia (lumina) subcylindrical; mural pores abundant on corallite faces, subcircular in profile, approximately 0.1–0.2 mm in diameter; septal spines common in axial zone and well-developed in peripheral stereozone, short conical; tabulae common, complete.

Occurrence: Localities 1 (NMNS PA18649–18682) and 2 (NMNS PA18683).

Etymology: The specific name is derived from Sumita-cho. The type locality of the new species belongs to this town.

Discussion: The above description is based on the type series consisting of fifteen specimens. Except for a paratype (NMNS PA18655, Fig. 3-E), skeletons of these specimens are dissolved and their internal structures are preserved as "steinkern". Accordingly, darker parts in branches of the holotype (Figs. 3-F, G) and a paratype (NMNS PA18666, Fig. 3-J) are acrylic resins injected into traces of intercorallite walls and tabulae.

The most closely related species to *Thamnopora sumitaensis* sp. nov. is *T. itoae* Niko, Ibaraki and Tazawa (2014, pp. 61, 63, figs. 2-1–3, 4-1–6). They show the similarities in the measurements of branch diameters, intercorallite wall thickness, the mode of occurrence of mural pores, and the possession of well-developed septal spines at their peripheral zones. The principal differences between the two species are slightly smaller corallite diameters (approximately 1.4 mm in distal parts) and somewhat fewer development of tabulae in *T. itoae*. The new species rather closely resembles *T. nicholsoni* (Frech, 1885, pp. 104, 105) and *T. siavis* Dubatolov in Dubatolov et al. (1959, pp. 22, 23, pl. 7, figs. 2a–e), but it differs from the latter two species principally in having well-developed septal spines.

Significance: Although *Thamnopora* ranges from Silurian to Devonian, most species of the genus have been recorded from Devonian strata (Hill, 1981; May, 1997). Exceptional late Silurian species, such as *T. senzaii* Niko, 2003, and *T. suberidaniensis* Niko, 2003, possess slender branches, small diameters of corallites and thin intercorallite walls, whose primitive characters are not recognized in *T. sumitaensis* sp. nov. from the Kamiarisu Formation. The new species is closely related with *T. itoae*, *T. nicholsoni*, and *T. siavis*. The stratigraphic position of *T. itoae* is unclear per se, because the species occurs from limestone pebbles belonging to Mesozoic conglomerate. However, some index species, such as *Thamnoptychia mana* Niko and Senzai, 2010, and *Heliolites porosus* (Goldfuss, 1826), associated with *T. itoae* warrant its Givetian (late Middle Devonian) age (Niko et al., 2014, 2015, 2016, 2019). *Thamnopora nicholsoni* has been reported widely from Givetian strata of Germany, Novaya Zemlya, Ukraine, Morocco, the Kuznetsk Basin, southwest
Siberia, South China, and the Kuzuryu Lake-Ise River area of central Japan (Niko and Senzai, 2011). Thannopora siavis is a rare species and restricted to the Eifelian (early Middle Devonian) of the Wunu-erh Formation in Da Xinggan Ling (Da Hinggan-ling), Inner Mongolia (Lin et al., 1988). These facts are clearly indicative of a Middle Devonian age for the fauna. Furthermore, it is a probable Givetian as a more refined age determination. Because Gracilopora is known from Lower to Middle Devonian rocks (Hill, 1981), co-occurrence of $G.?$ sp. indet. will not contradict this conclusion.

The Kamiarisu Formation was proposed by Tazawa et al. (1984) for the thick (more than 700 m) stratum consisting mainly of shale, sandstone and andesitic to dacitic tuff with minor amount of limestone (Figure 2). It is exposed in a north-south trending narrow area (15 km \times 0.2–2.0 km) of Sumita-cho, in which a drainage basin of the Tuchikura-zawa to Kanno-zawa Valleys is the type locality. In a small tributary of the Tuchikura River area of central Japan (Niko and Senzai, 2011). Thannopora siavis is a rare species and restricted to the Eifelian (early Middle Devonian) of the Wunu-erh Formation in Da Xinggan Ling (Da Hinggan-ling), Inner Mongolia (Lin et al., 1988). These facts are clearly indicative of a Middle Devonian age for the fauna. Furthermore, it is a probable Givetian as a more refined age determination. Because Gracilopora is known from Lower to Middle Devonian rocks (Hill, 1981), co-occurrence of $G.?$ sp. indet. will not contradict this conclusion.

The Kamiarisu Formation was proposed by Tazawa et al. (1984) for the thick (more than 700 m) stratum consisting mainly of shale, sandstone and andesitic to dacitic tuff with minor amount of limestone (Figure 2). It is exposed in a north-south trending narrow area (15 km \times 0.2–2.0 km) of Sumita-cho, in which a drainage basin of the Tuchikura-zawa to Kanno-zawa Valleys is the type locality. In a small tributary of the Tuchikura River area of central Japan (Niko and Senzai, 2011). Thannopora siavis is a rare species and restricted to the Eifelian (early Middle Devonian) of the Wunu-erh Formation in Da Xinggan Ling (Da Hinggan-ling), Inner Mongolia (Lin et al., 1988). These facts are clearly indicative of a Middle Devonian age for the fauna. Furthermore, it is a probable Givetian as a more refined age determination. Because Gracilopora is known from Lower to Middle Devonian rocks (Hill, 1981), co-occurrence of $G.?$ sp. indet. will not contradict this conclusion.

The Kamiarisu Formation was proposed by Tazawa et al. (1984) for the thick (more than 700 m) stratum consisting mainly of shale, sandstone and andesitic to dacitic tuff with minor amount of limestone (Figure 2). It is exposed in a north-south trending narrow area (15 km \times 0.2–2.0 km) of Sumita-cho, in which a drainage basin of the Tuchikura-zawa to Kanno-zawa Valleys is the type locality. In a small tributary of the Tuchikura River area of central Japan (Niko and Senzai, 2011). Thannopora siavis is a rare species and restricted to the Eifelian (early Middle Devonian) of the Wunu-erh Formation in Da Xinggan Ling (Da Hinggan-ling), Inner Mongolia (Lin et al., 1988). These facts are clearly indicative of a Middle Devonian age for the fauna. Furthermore, it is a probable Givetian as a more refined age determination. Because Gracilopora is known from Lower to Middle Devonian rocks (Hill, 1981), co-occurrence of $G.?$ sp. indet. will not contradict this conclusion. The Kamiarisu Formation was proposed by Tazawa et al. (1984) for the thick (more than 700 m) stratum consisting mainly of shale, sandstone and andesitic to dacitic tuff with minor amount of limestone (Figure 2). It is exposed in a north-south trending narrow area (15 km \times 0.2–2.0 km) of Sumita-cho, in which a drainage basin of the Tuchikura-zawa to Kanno-zawa Valleys is the type locality. In a small tributary of the Tuchikura River area of central Japan (Niko and Senzai, 2011). Thannopora siavis is a rare species and restricted to the Eifelian (early Middle Devonian) of the Wunu-erh Formation in Da Xinggan Ling (Da Hinggan-ling), Inner Mongolia (Lin et al., 1988). These facts are clearly indicative of a Middle Devonian age for the fauna. Furthermore, it is a probable Givetian as a more refined age determination. Because Gracilopora is known from Lower to Middle Devonian rocks (Hill, 1981), co-occurrence of $G.?$ sp. indet. will not contradict this conclusion.

Taking into consideration 1) age and stratigraphic horizon of the present tabulate corals, 2) presence of Devonian species in Pentamerus (e.g., Vai, 1967; Mottequin, 2019), 3) age of the above-mentioned trilobites, 4) abundant occurrence of terrestrial plant fossils (Kaneko and Kawamura, 1989) and 5) thickness, it can be concluded that the lowest Kamiarisu Formation is Middle Devonian (probably Givetian) in age and the more upper parts possibly extend to Late Devonian. It is thought that the Kamiarisu Formation corresponds to the Sunagohata Member of the Kamiarisu Formation (Yabe and Sugiyama, 1937; Chen and Tazawa, 2003; the Hikoroichia area) and the lower Choanji Formation (Yabe and Sugiyama, 1937; Tazawa and Niikawa, 2018; Tazawa, 2018; the Hikoroichia area) in the Southern Kitakami Belt.

Acknowledgements

I am grateful to Dr. Masayuki Ehito and Mr. Atsushi Kaneko for sharing their knowledge of fossil localities in the Kamiarisu area. Thanks are also extended to Dr. Tetsuo Sugiyama, who provided kind comments and suggestions on the manuscript as a reviewer.

References

