Hexagonal prismatic garnet from Yamanoo pegmatite, Ibaraki, Japan

Masahiko Hayashi ${ }^{1}$, Fujiko Hayashi ${ }^{2}$, Atsushi Yamazaki ${ }^{3}$, Mana Yasui ${ }^{4}$ and Satoshi Matsubara ${ }^{5}$
${ }^{1}$ Faculty of Education and Integrated Arts and Science, Waseda University, Tokyo 169-8050, Japan
${ }^{2}$ Hayashi Thin Section Laboratory, Tokyo 133-0052, Japan
${ }^{3}$ School of Creative Science and Engineering, Waseda University, Tokyo 169-8555, Japan
${ }^{4}$ Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
${ }^{5}$ National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan

Abstract

Almandine-spessartine intermediate garnet occurs as hexagonal prismatic crystals from granitic pegmatite at Yamanoo, Ibaraki, Japan. This garnet is composed of 56% almandine and 44% spessartine. The crystal habit is dodecahedron consisting of $n\{110\}$ and $d\{211\}$, and distinctly elongated to [111] direction.

Key words: intermediate garnet, almandine, spessartine, hexagonal prism, pegmatite

Introduction

During the examination for pegmatite minerals from Yamanoo, Ibaraki, Japan, an orange hexagonal prismatic garnet crystal was recognized. This specimen was collected by one of the authors, Fujiko Hayashi, in 1979. We identified that the garnet has intermediate composition of almandine and spessartine using X-ray diffractometer and EDS analyzer. Although a similar prismatic garnet crystal from Yamanoo is deposited in the Sakurai mineral collection of the National Museum of Nature and Science, Tokyo, under the name almandine (NSM-M39929), and another one also has been reported from same locality by Kuroishi (1989), the chemical composition and unit cell parameter of both specimens have not been examined. The present specimen is deposited in the mineral collection of the same museum (NSM-M46375).

Occurrence

Yamanoo is located at about 3 km east of the Makabe town, and at about 5 km north of Mt. Tsukuba, Sakura city, Ibaraki prefecture, Japan. The geology of this area is composed of metamorphosed sedimentary rocks of the Upper Paleozoic, gabbroic rocks and granitic rocks (e.g. Okada et al., 1954). Granitic rocks of the area are classified into the Tsu-

[^0]kuba, Inada and Kabasan-granites (Miyazaki et al., 1996) based on their rock facies and intrusive relations. Recently, Koike and Tsutsumi (2017) determined the age of zircon in these three types of granitic rocks by the $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ method using LA-ICP-MS, and the results are $62-80 \mathrm{Ma}, 64 \mathrm{Ma}$ and $64-81 \mathrm{Ma}$, respectively. The Yamanoo pegma-

Fig. 1. Hexagonal prism of almandine (orange arrow) in the matrix. White is feldspars, gray is quartz and black is columbite-(Fe).
titic dikes or lenses are observed in the fine-grained muscovite-bearing biotite granite of the Kabasangranite. Many minerals are known in the pegmatites as follows: columbite-(Fe), monazite-(Ce), xeno-time-(Y), almandine, zircon, uranophane- β, bertlandite, beryl, muscovite, quartz, opal, orthoclase,

Fig. 2. Orange prismatic almandine in feldspars.

Fig. 3. The cross section of the hexagonal prism.

Fig. 5. Plane-polarized light image (left) and cross-polarized light image (right) of the thin section of sample.

Table 1. Chemical compositions of the sample normalized as total $=100 \%$.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
SiO_{2}	35.23	35.25	35.14	35.59	35.28	35.03	35.42	35.57	35.75	35.12
$\mathrm{Al}_{2} \mathrm{O}_{3}$	20.34	20.6	20.89	21.21	20.57	20.67	20.39	20.68	20.58	20.86
FeO	25.02	24.66	24.69	24.1	25.31	24.77	24.51	24.57	24.66	24.72
MnO	19.41	19.49	19.29	19.09	18.84	19.54	19.68	19.18	19.02	19.3
	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
SiO_{2}	36.32	35.39	34.98	35.04	34.66	35.08	35.06	34.7	34.57	35.49
$\mathrm{Al}_{2} \mathrm{O}_{3}$	20.84	20.86	20.61	20.39	20.04	20.24	19.87	19.97	21.59	20.79
FeO	23.79	24.43	25.23	24.39	25.87	25.81	25.2	25.35	24.34	24
MnO	19.05	19.32	19.17	20.17	19.43	18.88	19.87	19.99	19.5	19.72

	Average of $(1) \sim(20)$
SiO_{2}	35.23
$\mathrm{Al}_{2} \mathrm{O}_{3}$	20.6
FeO	24.77
MnO	19.4
Mineral Species	
Almandine	
Spessartine	$56 \mathrm{~mol} \%$

Table 2. Details of the sample, data collection, and structural refinement.

```
Temperature \(23.0^{\circ} \mathrm{C}\)
Radiation \(\mathrm{Mo}-\mathrm{K} \alpha\)
Crystal size \(\quad 0.37 \times 0.23 \times 0.13 \mathrm{~mm}\)
Space Group Ia \(\overline{3} d(\# 230)\)
Unit cell dimension \(\mathrm{a}=1.1570\) (1) nm
Volume \(\quad V=1.5487(1) \mathrm{nm}^{3}\)
Z 4
F(000) 1924
Diffractometer Rigaku R-AXIS RAPID
Voltage, Current \(50 \mathrm{kV}, 40 \mathrm{~mA}\)
Detector Aperture \(460.0 \times 256.0 \mathrm{~mm}\)
Data Images 44 exposures
\(\omega\) osclllation Range \((\chi=45.0, \psi=0.0) \quad 130.0^{\circ}-190.0^{\circ}\)
Exposure Rate \(100.0 \mathrm{sec} . /^{\circ}\)
\(\omega\) oscillation Range ( \(\chi=45.0, \psi=180.0\) ) \(\quad 0.0^{\circ}-160.0^{\circ}\)
Exposure Rate \(100.0 \mathrm{sec} . /^{\circ}\)
Detector Position \(\quad 127.40 \mathrm{~mm}\)
Pixel Size \(0.10 \mathrm{~mm} \times 0.10 \mathrm{~mm}\)
Maximum \(2 \theta \quad 54.7^{\circ}\)
No. of Reflections Measured Total: 6391
Structure Solution Direct Methods (SHELXT Ver.2014/4)
Refinement Full-matrix least-squares on \(\mathrm{F}^{2}\)
Function Minimized \(\quad \Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\)
Least Squares Weights \(\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0177 \cdot \mathrm{P})^{2}+2.0942 \cdot \mathrm{P}\right]\)
where \(\mathrm{P}=\left(\operatorname{Max}\left(\mathrm{Fo}^{2}, 0\right)+2 \mathrm{Fc}^{2}\right) / 3\)
Residual: RI ( \(\mathrm{I}>2.00 \sigma(\mathrm{I})\) ) 0.0159
Residual: R (All reflections) 0.0161
Residual: wR2 (All reflections) 0.0476
```

Table 3. Atomic coordinates and B iso $/ B$ eq and occupancy.

Site (atom)	x	y	z	B eq $^{1)}$	Occ. assigned
$\mathrm{M} 1(\mathrm{Fe})$	0.5	0.75	0.125	$0.62(13)$	0.151340
$\mathrm{M} 1(\mathrm{Mn})$	0.5	0.75	0.125	$0.9(2)$	0.093850
A1	0.5	0.5	0	$0.49(3)$	$1 / 6$
Si	0.5	0.75	-0.125	$0.45(2)$	$1 / 4$
O	$0.45158(9)$	$0.65267(8)$	$-0.03439(9)$	$0.65(3)$	1

1) B eq $=8 / 3 \pi 2\left(U 11\left(a a^{*}\right) 2+U 22\left(\mathrm{bb}^{*}\right) 2+U 33\left(\mathrm{cc}^{*}\right) 2+2 U 12\left(a a^{*} \mathrm{bb}^{*}\right) \cos \gamma+2 U 13\left(a a^{*} \mathrm{cc}^{*}\right) \cos \beta+2 U 23\left(\mathrm{bb}^{*} \mathrm{cc}^{*}\right) \cos \alpha\right)$

Table 4. Anisotropic displacement parameters.

Site (atom)	$U 11$	$U 22$	$U 33$	$U 12$	$U 13$	$U 23$
M1 (Fe)	$0.0059(17)$	$0.0059(17)$	$0.012(2)$	$-0.0022(15)$	0	0
M1 (Mn)	$0.019(4)$	$0.019(4)$	$-0.005(3)$	$0.002(3)$	0	0
A1	$0.0062(4)$	$0.0062(4)$	$0.0062(4)$	$0.00012(18)$	$0.00012(18)$	$0.00012(18)$
Si	$0.0060(3)$	$0.0060(3)$	$0.0052(4)$	0	0	0
O	$0.0093(6)$	$0.0069(5)$	$0.0086(6)$	$0.0002(4)$	$0.0010(3)$	$0.0008(4)$

The general temperature factor expression: $\exp \left(-2 \pi^{2}\left(a^{* 2} U 11 \mathrm{~h}^{2}+\mathrm{b}^{* 2} U 22 \mathrm{k}^{2}+\mathrm{c}^{* 2} U 33 \mathrm{l}^{2}+2 a^{*} \mathrm{~b}^{*} U 12 \mathrm{hk}+2 a^{*} \mathrm{c} * U 13 \mathrm{hl}\right.\right.$ $\left.+2 \mathrm{~b}^{*} \mathrm{c}^{*} U 23 \mathrm{kl}\right)$)

Table 5. Bond lengths (nm).

Atom	Atom	Distance	Atom	Atom	Distance
M1	O	$0.22322(10)$	M 1	O^{1}	$0.22322(10)$
M 1	O^{2}	$0.22322(10)$	M 1	O^{3}	$0.22322(10)$
Al	O	$0.18953(9)$	Al	O^{4}	$0.18953(9)$
Al	O^{5}	$0.18953(9)$	Al	O^{6}	$0.18953(9)$
Al	O^{7}	$0.18953(9)$	Al	O^{8}	$0.18953(9)$
Si	O	$0.16374(10)$	Si	O^{9}	$0.16374(10)$
Si	O^{1}	$0.16374(10)$	Si	O^{10}	$0.16374(10)$

Symmetry Operators:
(1) $-X+1,-Y+1 / 2+1, Z$
(2) $Y, X+1,-Z+1$
(3) $-Y+2,-X+2,-Z+1$
(4) $-Z+1 / 2,-X+1, Y+1 / 2-1$
(5) $-Y+1, Z+1 / 2,-X+1 / 2$
(6) $-X+1,-Y+1,-Z$
(7) $Z+1, X,-Y+1$
(8) $Y,-Z+1, X$
(9) $Y+3 / 4-1,-X+1 / 4+1,-Z+3 / 4-1$
(10) $-Y+1 / 4+1, X+1 / 4,-Z+3 / 4-1$

Table 6. Bond angles $\left({ }^{\circ}\right)$.

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
O	M 1	O^{1}	$68.59(4)$	O	M 1	O^{2}	$115.42(4)$
O	M 1	O^{3}	$159.35(4)$	O^{1}	M 1	O^{2}	$159.35(4)$
O^{1}	M 1	O^{3}	$115.42(4)$	O^{2}	M 1	O^{3}	$68.59(4)$
O	Al	O^{4}	$88.98(4)$	O	Al	O^{5}	$88.98(4)$
O	Al	O^{6}	$180.00(6)$	O	Al	O^{7}	$91.02(4)$
O	Al	O^{8}	$91.02(4)$	O^{4}	Al	O^{5}	$88.98(4)$
O^{4}	Al	O^{6}	$91.02(4)$	O^{4}	Al	O^{7}	$180.00(6)$
O^{4}	Al	O^{8}	$91.02(4)$	O^{5}	Al	O^{6}	$91.02(4)$
O^{5}	Al	O^{7}	$91.02(4)$	O^{5}	Al	O^{8}	$180.00(6)$
O^{6}	Al	O^{7}	$88.98(4)$	O^{6}	Al	O^{8}	$88.98(4)$
O^{7}	Al	O^{8}	$88.98(4)$	O	Si	O^{9}	$114.20(5)$
O^{9}	Si	O^{1}	$100.38(5)$	O	Si	O^{10}	$114.20(5)$
O^{9}	Si	O^{1}	$114.20(5)$	O^{9}	Si	O^{10}	$100.38(5)$
O^{10}	Si	O^{10}	$114.20(5)$	M 1	O	Al	$102.86(5)$
M 1	O	Si	$95.52(4)$				
Al	O	Si	$132.40(6)$				

Symmetry Operators:
(1) $-X+1,-Y+1 / 2+1, Z$
(2) $Y, X+1,-Z+1$
(3) $-Y+2,-X+2,-Z+1$
(4) $-Z+1 / 2,-X+1, Y+1 / 2-1$
(5) $-Y+1, Z+1 / 2,-X+1 / 2$
(6) $-X+1,-Y+1,-Z$
(7) $Z+1, X,-Y+1$
(8) $Y,-Z+1, X$
(9) $Y+3 / 4-1,-X+1 / 4+1,-\mathrm{Z}+3 / 4-1$
(10) $-Y+1 / 4+1, X+1 / 4,-Z+3 / 4-1$

Fig. 6. Projections of the structure of intermediate garnet. Brown ball with magenta: M1 site (Fe and Mn), pale-blue: Al site, blue: Si site, red: O site. The structures were drawn with computer program VESTA (Momma and Izumi, 2011).

Fig. 7. The Kikuchi pattern (left) and a polar figure indicate direction of $\{110\}$ and its equivalent reflections.
tion by Akizuki, 1989), twinning or zonal structure.

Chemical Composition

Chemical compositions of the sample were determined with a JEOL JSM-6360 scanning electron microscope ($15 \mathrm{kV}, 6 \mu \mathrm{~A}$) and Oxford EDS system. Elements except $\mathrm{Si}, \mathrm{Al}, \mathrm{Fe}$ and Mn are scarcely detected by EDS measurement. The total weight percentage of all analyses is normalized to 100%. The results of the chemical analyses determine the chemical formula as $\left(\mathrm{Fe}_{1.73} \mathrm{Mn}_{1.37}\right)_{\Sigma 3.10} \mathrm{Al}_{2.02} \mathrm{Si}_{2.94} \mathrm{O}_{12}$, and indicate the present sample consisting of 56% almandine and 44% spessartine (Table 1). Consequently, the species name is determined almandine (Grew et al., 2013).
ent orange prismatic crystal was collected with a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Mo-K α radiation. The crystal structure was refined to $\mathrm{wR} 2=0.0476$ under space group Ia $\overline{3} d$. The refined cell parameters were $a=$ 1.1570 (1) $\mathrm{nm}, V=1.5487$ (1) nm^{3}. The initial structure model was obtained by direct method and missed sites were then located using differences Fourier techniques. All calculations were performed using SHELXL Version 2014/6 (Larson, 1970; Sheldrick, 2008, 2014). Details of data collection and refinement are given in Table 2. The crystallographic data (Tables 3-6) proves the sample to be a garnet (almandine-spessartine solid solution). Figure 6 shows the crystal structure of the garnet viewed along [100] and [110] drawn by VESTA (Momma and Izumi, 2011).

X-ray Crystallography

Single-crystal X-ray diffraction data for the pres-

SEM-EBSD

The direction of the prismatic sample has been measured using electron backscatter diffraction (EBSD) with a scanning electron microscope (the SEM EBSD method). A Hitachi S-3400N scanning electron microscope (SEM) at Waseda University was used with following conditions: accelerating voltage 20 kV , working distance 30 mm , specimen tilted by 70°, low-vacuum mode $(30 \mathrm{~Pa})$, and uncoated samples. We used an HKL Nordlys detector (Oxford Instruments) to detect the electron backscatter patterns (EBSD) and HKL Channel 5 software (Oxford Instruments) to index the EBSD. Figure 7 shows the result of the measurement of the sample.

Discussion

Almandine-spessartine solid solution is ordinarily optically isotropic, and the most common crystal forms are dodecahedron or tetragonal trioctahedron. The present sample is optically isotropic and has an intermediate composition of 56% almandine and 44% spessartine. However, the crystal habit shows hexagonal prism elongated along [111]. The monoclinic crystal somewhat resembling augite with intermediate chemical composition of almandinespessartine solid solution was named as partschinite (Dana, 1915), but was later considered spessartine by Strunz (1970).

Viewing from [111] direction, Al atoms in alman-dine-spessartine solid solution densely arrange (Fig. 6). The driving force for continuously supplying a solution of AlF_{6}^{3-} may crystallize the hexagonal prismatic almandine.

Acknowledgements

We thank Dr. T. Kanai (Teikyo university) for his
measurement of SEM-EBSD and Mr. Y. Takeshita (Total Geological Consultant) for his drawing of crystal form. We are also indebted to Dr. A. Kato (National Museum of Nature and Science) for his providing valuable comments and advices.

References

Akizuki, M. (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. American Mineralogist, 74: 859-864.
Dana, S. E. (1915) The System of Mineralogy. Sixth edition, John Wiley \& Sons, 448.
Grew, E. S., Locock, A. J., Millls, S. J. Galuskina, I. O., Galuskin, E. V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.

Koike, W. and Tsutsumi, Y. (2017) Zircon U-Pb dating of the granite of the Tsukuba Mountains, Ibaraki Prefecture. Japan Association of Mineralogical Sciences, Annual Meeting Abstracts (In Japanese).
Kuroishi S. (1989) The topics on garnet crystal. Quartz, Friends of Mineral, Tokyo, 3: 3-4. (In Japanese).
Larson, A. C. (1970) The inclusion of secondary extinction in least-squares refinement of crystal structure. Crystallographic Computing, 291-294.
Miyazaki, K., Sasada, M. and Yoshioka, T. (1996) Geology of the Makabe district. With Geological Sheet Map of 1: 50,000, Geological Survey of Japan, 1-103 (In Japanese with English abstract 4 p.).
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44: 12721276.

Okada, S., Shimoda, N. and Shibata, H. (1954) Petrochemical studies on the granitic rocks in Tsukuba Region. Studies from the Geological and Mineralogical Institute, Tokyo University of Education, 3: 197-203 (In Japanese with English abstract).
Sakurai, K. and Kato, A. (1972) Kobutsu Saishunotabi. Tsukijishokan, 44-50 (In Japanese).
Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64: 112-122.
Sheldrick, G. M. (2014) SHELXT: Integrating space group determination and structure solution. Acta Crystallographica, A70: C1437.
Strunz, H. (1970) Mineralogische Tabellen. Akademische Verlagsgesellschaft Geest \& Portig K.-G., 71-73, 369.

[^0]: © 2019 National Museum of Nature and Science

