U-Th-total Pb ages of Uraninite and Thorite from Granititc Rocks in the Japanese Islands

Kazumi Yokoyama ${ }^{1}$, Masako Shigeoka ${ }^{1}$, Atsushi Goto ${ }^{2}$, Kentaro Terada ${ }^{2}$, Hiroshi Hidaka ${ }^{2}$ and Yukiyasu Tsutsumi ${ }^{1}$
${ }^{1}$ Department of Geology and Paleontology, National Museum of Nature and Science, Shinjuku-ku, Tokyo 169-0073, Japan [E-mail: yokoyama@kahaku.go.jp]
${ }^{2}$ Petrology Course, School of Science, University of Hyogo (Branch of Himeji Institute of Technology), 2167, Shosha Himeji, Hyogo 671-2201, Japan
${ }^{3}$ Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
* Author for correspondence: yokoyama@kahaku.go.jp

Abstract

Absract Dating based on total $\mathrm{UO}_{2}, \mathrm{ThO}_{2}$ and PbO contents of uraninite and anhydrous thorite from granitic rocks was performed using an electron microprobe analyser (EPMA) at the National Museum of Nature and Science, Tokyo. After careful comparison with the ages obtained by isotopic methods (SHRIMP and K-Ar), this study confirmed that the EPMA-derived ages of uraninites and thorites are consistent with ages obtained by isotopic methods. The ages of the uraninite samples in this study ranged from 1.5 to 240 Ma . Standard deviation of uraninite age was 0.6 at 2.4 $\mathrm{Ma}, 0.7$ at $5.2 \mathrm{Ma}, 1.1$ at 66.5 Ma and around 4 at over 180 Ma . As the standard deviation of uraninite is expected to be less than 1 Ma from count statistics, the high deviation for the old uraninite may be due to partly metamicted conditions. Thorite is the most common radiogenic mineral in granitic rocks. It was totally hydrated in the granitic samples older than 150 Ma and highly hydrated even in Tertiary granite. The age obtained from thorite was determined to be up to 120 Ma .

Key words: uraninite, thorite, age, EPMA, granite Introduction

Holmes (1911) first established a method for dating minerals through normal wet chemical analyses on the basis of the assumption that inherited Pb was negligible at the time of crystallization of minerals. Holmes (1931) later dealt exhaustively with the application of radioactivity to the measurement of geologic time. The method was used by many researchers and was referred to as the chemical age. After the isotopic method had been widely accepted, the inherited lead in uraninite was confirmed to be less than 0.2 \% (cf. Holmes, 1960). Although in his 1931 paper Holmes presented a correct calculation method which was very complex, a simpler and more approximate age calculation method was applied for the minerals. Mineral age was simply obtained by

Approximate age $(\mathrm{Ma})=\mathrm{a} * \mathrm{~Pb} /(\mathrm{U}+\mathrm{bTh})$ (1)
where elemental concentrations are in $\mathrm{wt} \%$. The
numerical values, a and b, were given as 7600 and 0.36, respectively, in Holmes (1931). Since then, many researchers have tried to modify the values of a and b. Bowles (1990) and Suzuki and Adachi (1990) have developed accurate age calculations for uraninite and monazite, respectively. Bowles (1990) assumed that the initial Pb concentration is negligible as did Holmes, whereas Suzuki and Adachi (1990) insisted that the initial Pb is obtained by an isochron line. Both the calculations yield essentially the same age results. From mineral composition analyzed by an electron microprobe analyser which is now a ubiquitous machine, many researchers have obtained mineral ages using the above calculation methods. In recent calculations of mineral age, the initial Pb has been treated as negligible in amount as was first done by Holmes (1911 \& 1931).

In electron microprobe analyses (EPMA), monazite and zircon in young igneous or metamorphic rocks exhibit levels of radiogenic Pb that are too low to calculate an accurate age, due to low U and Th contents. For monazite, a number of papers have treated sufficiently old rocks, i.e. Paleozoic or older (e.g. Montel et al., 1996; Williams et al., 1999; Foster et al., 2000a; Santosh et al., 2006). On the other hand, uraninite, thorianite, thorite and huttonite contain high concentrations of radiogenic Pb even in Tertiary rocks. Uraninite ages were obtained by Bowles (1990) from various rocks ranging in age from 19 to 1800 Ma , by Santosh et al. (2005) for 500 Ma gneiss, and by Hurtado et al. (2007) for Tertiary granite. Yokoyama et al., (2010) obtained ages of thorite, uraninite and thorianite from samples of Vietnumese river sands. Naemura et al. (2008) obtained ages of thorianite in peridotite. Foster et al. (2000b) analyzed thorite and huttonite in samples of beach sands from New Zealand, and obtained ages from 2.3 Ma to 210 Ma. In most of these dating studies, the EPMA ages were consistent with those obtained by isotopic methods or the EPMA ages of monazite.

In the Japanese Islands, uraninites in granitic rocks have been analyzed using wet chemical methods and were calculated using the simple equation of Holmes (Iimori, 1941; Nagashima and Nagashima, 1960). The EPMA age method, i.e. U-Th-total Pb or chemical methods, has attracted attention for its quickness, high spatial resolution and relatively high precision as well as isotopic methods. Granitic rocks in the Japansese Islands generally vary in age from 1.5 to 280 Ma . In this paper, we attempted to confirm the calculated chemical ages of uraninite and thorite using an EPMA in the National Museum of Nature and Science, and demonstrate the validity of the method which yields age results comparable to those obtained by the isotopic methods such as SHRIMP and K-Ar method. A study of monazite ages comparing the results obtained by the same EPMA machine and isotopic ages has been previously reported by Santosh et al. (2006).

Samples and methods

a: Sample preparation and chemical analyses
Most of the granitic rocks in the Japansese Islands have been analyzed using the K-Ar method (e.g. Kawano and Ueda, 1966: Shibata et al., 1984: Uchiumi et al., 1990). Cretaceous granitic rocks are the most ubiquitous, whereas Tertiary granitic rocks occur mostly in Southwest Japan along the Pacific Ocean. Permian to Triassic granites occur only in the Hida Terrane. Ages of far older granitic rocks, Cambrian to Silurian, have been obtained using the SHRIMP method (Watanabe et al., 1995; Sakashima et al. 2003), but these samples were usually from small plutonic bodies. As such old granitic rocks do not preserve uraninite and anhydrous thorite, we analyse uraninites and thorites in eleven granitic rocks with ages from 1.5 Ma to 280 Ma (Fig. 1 and Table 1). Four samples were from the Hida Terrane. Three samples were from Cretaceous region, and the other three from Tertiary and Quaternary rocks.

All samples (except for the Quaternary aplite) have not been previously examined by isotopic methods. Six samples are newly analyzed by SHRIMP in this study. The other four rocks are

Fig. 1. Localities of the granitic rocks used for the EPMA age measurements.

Table 1. Summary of the analysed samples and ages obtained using EPMA and the other methods.

Locality	Sample No.	Rock type	EPMA age				Age obtained by other methods			
			Uraninite	error (1σ)	Thorite	$\begin{aligned} & \text { error } \\ & (1 \sigma) \end{aligned}$	Isotope age	$\begin{gathered} \text { error } \\ \text { (t-sigma) } \end{gathered}$	method	Reference
Hida	98112501	granite	232.6	3.9			238.4*	4.6	SHRIMP	This paper
Hida	98092910	granite	204.4	4.3			200.6*	6.5	SHRIMP	This paper
Hida	99042103	granite	198.9	2.6			189.3*	4	SHRIMP	This paper
Hida	98100304	granite	189.6	4.0			192.5*	2.9	SHRIMP	This paper
Kitakami	SK53	granite	115.1	1.9	117	6.6	117*	2.7	SHRIMP	This paper
Ashio	Ashi-2	granite	99.2	1.7			103.8*	2.6	SHRIMP	This paper
Ikoma	IK-2	granodiorite	85.8	0.08			87**	$4(2 \sigma)$	SHRIMP	Watanabe et al. (2000)
Tsukuba	Z-4	granite	66.5	1.1			63***		$\mathrm{K}-\mathrm{Ar}(\mathrm{bi})$	Kawano \& Ueda (1966)
Yamanashi	S-9	granodiorite			12.1	1.5	12.1**		$\mathrm{K}-\mathrm{Ar}(\mathrm{bi})$	Uchiumi et al. (1990)
Yamanashi	S-6	granodiorite	5.2	0.7	4.8	1.2	4.4***	* 0.3	$\mathrm{K}-\mathrm{Ar}(\mathrm{bi})$	Shibata et al. (1984)
Hida	TD-2	aplite	2.4	0.6	3.4	1.1	1.4*	0.3	SHRIMP	Sano et al. (1999)

* same sample, ${ }^{* *}$ sample is collected from the same outcrop, ${ }^{* * *}$ from the same granitoid body
collected from the same outcrops or igneous plutons as those analyzed by isotopic methods. The EPMA-derived ages of uraninites and thorites are compared with the ages as given by SHRIMP or the K -Ar methods (Table 1).

As uraninite and thorite are rare minerals in granitic rocks, the rock samples were crushed into fine fractions in a stainless-steel stamp mill. Powdered samples ($<100 \mu \mathrm{~m}$ mesh size) were cleaned using water to remove the dust particles, and then dried in an oven. The magnetic minerals were then removed using a hand magnet. Zircon grains were hand picked for SHRIMP analyses. Other heavy fractions were separated using methylene iodide with specific gravity of 3.3 , and mounted on glass slides using epoxy resin. Polished grain mounts were used for the study of grain characteristics and EPMA analyses.

The chemical analyses were carried out using a JEOL-8800 electron microprobe. Uraninite and thorite are at first fully analyzed to determine the presence of major and trace elements ($\mathrm{P}, \mathrm{Si}, \mathrm{Ce}$, Pr, Nd, Sm, Gd, Dy, Er, Tm, Yb, Lu, Y, U, Th, Pb and Ca). The operating conditions of the microprobe were 15 kV accelerating voltage and 0.02 $\mu \mathrm{A}$ probe current. Counting time on each analytical point was 15 seconds at peak and 5 seconds at backgrounds for all the elements. PRZ corrections (modified ZAF) were applied for the analyses. Standards used were wollastonite for Si and

Ca , synthetic (REE) $\mathrm{P}_{5} \mathrm{O}_{14}$ for REE and P. The standards for U, Th and Pb were synthesized $\mathrm{UO}_{2}, \mathrm{ThO}_{2}$ and natural crocoite $\left(\mathrm{PbCrO}_{4}\right)$, respectively. Element uranium was calculated as UO_{2}. All the analytical points were selected under back-scattered images to avoid cracks and the metamicted parts of the sample. The analytical result is shown in Table 2.

In the age analyses, the elements were selected to minimize the damage to the minerals. They were $\mathrm{P}, \mathrm{Si}, \mathrm{Y}, \mathrm{U}, \mathrm{Th}, \mathrm{Pb}$ and Ca . The probe operating conditions were 15 Kb and $0.1 \mu \mathrm{~A}$. Counting times for Pb were 100 and 30 seconds at peak and backgrounds, respectively, whereas 50 seconds at peak and 20 seconds at backgrounds were used for U and Th analyses. Counting times for other elements were the same as those in the normal analyses. The U $M \alpha$, $\mathrm{Th} M \alpha$ and $\mathrm{Pb} M \alpha$ lines were used in the U, Th and Pb analyses, respectively, and the spectral interferences of the Th and Y lines with the $\mathrm{Pb} M \alpha$ line, and the Th line with the $\mathrm{U} M \alpha$ line were corrected (cf. Pyle et al., 2002).

b: Uraninite and thorite

In granitic rocks, uraninite $\left(\mathrm{UO}_{2}\right)$ and thorite (ThSiO_{4}) are usually rare minerals. Uraninite occurs mostly as a euhedral grain in the heavy fraction (Fig. 2), rarely surrounded by pyrite. Thorite is commonly altered into hydrous thorite. Anhy-
Table 2. Chemical compositions of uraninite and thorite in granitic rocks. Analytical conditions are different from age analyses. Current: $2 \times 10^{-8} \mathrm{~A}, \mathrm{Measurement} \mathrm{at}$ peak and back ground are 15 and 5 seconds, respectively.

sample No.	98112501		98100304		SK53		SK53		IK2		S-9		S-6		S-6		TD-2		TD-2	
mineral uraninite $\mathrm{n}=27$ *			uraninite	$\mathrm{n}=14$ *	uraninite	$\mathrm{n}=12$ *	thorite	$\mathrm{n}=12$ *	uraninite	11*	thorite	$\mathrm{n}=14$ *	uraninit	$\mathrm{n}=7$ *	thorite	$\mathrm{h}=18$ *	uraninit	$=15 *$	thorite	$\mathrm{n}=15^{*}$
Commen		1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ \text { (wt\%) } \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ	$\begin{gathered} \text { av. } \\ (\mathrm{wt} \%) \end{gathered}$	1σ
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.01	0.01	0.13	0.29	0.01	0.02	1.24	0.37	0.01	0.01	0.24	0.09	0.02	0.01	0.43	0.33	0.02	0.01	1.62	0.78
SiO_{2}	0.07	0.13	0.11	0.18	0.08	0.06	17.98	0.13	0.05	0.04	18.32	0.18	0.04	0.02	18.21	0.25	0.03	0.02	17.67	0.33
UO_{2}	85.39	2.46	80.56	3.46	84.18	0.90	15.60	4.40	93.54	1.28	17.33	7.80	81.04	0.27	16.01	5.26	79.94	1.35	16.40	1.61
ThO_{2}	8.09	1.30	10.17	2.42	8.35	0.59	58.68	3.52	2.24	0.27	63.14	8.18	8.94	0.90	63.93	6.39	7.89	1.52	60.17	1.90
PbO	3.07	0.27	2.42	0.35	1.44	0.02	0.54	0.06	1.10	0.02	0.05	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.00	0.01
CaO	0.71	0.12	0.78	0.15	0.31	0.03	0.02	0.01	0.15	0.02	0.02	0.01	0.16	0.04	0.02	0.01	0.19	0.14	0.01	0.01
$\mathrm{Y}_{2} \mathrm{O}_{3}$	0.57	0.47	1.89	0.65	2.10	0.27	2.49	1.02	0.92	0.07	0.38	0.12	5.17	0.71	0.58	0.44	6.83	1.19	2.46	1.17
$\mathrm{Ce}_{2} \mathrm{O}_{3}$	0.30	0.10	0.60	0.08	0.45	0.09	0.35	0.16	0.20	0.05	0.11	0.07	0.74	0.06	0.12	0.05	0.75	0.27	0.18	0.05
$\mathrm{Nd}_{2} \mathrm{O}_{3}$	0.13	0.07	0.54	0.13	0.47	0.07	0.42	0.17	0.14	0.06	0.08	0.05	0.86	0.15	0.12	0.05	0.61	0.24	0.14	0.06
$\mathrm{Sm}_{2} \mathrm{O}_{3}$	0.07	0.06	0.23	0.08	0.27	0.03	0.18	0.09	0.11	0.05	0.04	0.04	0.51	0.07	0.05	0.05	0.41	0.09	0.11	0.05
$\mathrm{Gd}_{2} \mathrm{O}_{3}$	0.06	0.05	0.20	0.08	0.25	0.05	0.29	0.11	0.12	0.06	0.08	0.04	0.54	0.08	0.07	0.06	0.45	0.08	0.16	0.07
$\mathrm{Dy}_{2} \mathrm{O}_{3}$	0.09	0.06	0.28	0.09	0.37	0.07	0.34	0.15	0.18	0.05	0.05	0.05	0.89	0.07	0.09	0.08	1.10	0.21	0.29	0.14
$\mathrm{Er}_{2} \mathrm{O}_{3}$	0.04	0.04	0.21	0.10	0.24	0.08	0.22	0.09	0.10	0.05	0.04	0.05	0.59	0.10	0.06	0.05	0.86	0.19	0.21	0.13
$\mathrm{Tm}_{2} \mathrm{O}_{3}$	0.01	0.02	0.06	0.06	0.05	0.05	0.05	0.04	0.02	0.03	0.02	0.03	0.13	0.02	0.03	0.04	0.13	0.06	0.03	0.03
$\mathrm{Yb}_{2} \mathrm{O}_{3}$	0.04	0.05	0.19	0.12	0.17	0.05	0.13	0.08	0.05	0.06	0.03	0.03	0.40	0.12	0.04	0.04	0.75	0.29	0.15	0.10
$\mathrm{Lu}_{2} \mathrm{O}_{3}$	0.07	0.06	0.08	0.05	0.07	0.06	0.05	0.04	0.04	0.05	0.05	0.04	0.13	0.04	0.05	0.05	0.23	0.09	0.07	0.06
Total	98.73	0.83	98.46	1.16	98.79	0.43	98.57	0.51	98.95	0.97	99.95	0.34	100.20	0.44	99.79	0.49	100.20	0.35	99.66	0.44

[^0]

Fig. 2. BSE images of the uraninites and thorites. A: fresh uraninite in TD-2, B: fresh uraninite in SK53, C: highly metamicted uraninite in a sample 98112501. D: fresh thorite in TD-2, E: partly hydrated thorite in S-9 (dark parts are hydrous thorite), F: thorite surrounded by hydrous thorite in SK53.
drous thorite is mostly preserved partly in hydrated thorite grains (Fig. 2). In addition to the observation under BSE image, hydrous thorite is recognized by the presence of CaO content and low overall concentration.

Natural uraninite is composed mainly of UO_{2} and ThO_{2} with subordinate amounts of Y and
heavy REEs. Anhydrous thorite is composed mainly of $\mathrm{SiO}_{2}, \mathrm{ThO}_{2}$ and UO_{2} with subordinate amounts of Y and lantanoids. In the routine analyses for age determination, we analyzed only seven elements: $\mathrm{P}, \mathrm{Si}, \mathrm{Y}, \mathrm{U}, \mathrm{Th}, \mathrm{Pb}$ and Ca . Under these conditions, total amounts of uraninite and thorite were found to be in a range from 90 to
100%. The lower values were usually Y-rich uraninites and thorite. The total amount of unanalyzed REE elements was roughly equivalent to $\mathrm{Y}_{2} \mathrm{O}_{3}$ contents (Fig. 3). The analyses of U, Th and Pb that yielded low totals were checked against $\mathrm{Y}_{2} \mathrm{O}_{3}$ contents.
c: Theoretical basis of chemical dating
Uraninite and thorite are abundant in U-Th system radioisotopes, which finally disintegrate into the stable Pb isotope through α and β decays. As the contents of nonradiogenic Pb in uraninite and thorite are negligible compared with the amount of radiogenic Pb , the age (t) of individual mineral was calculated using equation (2)

$$
\begin{align*}
\frac{\mathrm{PbO}}{\mathrm{~W}_{\mathrm{Pb}}}= & \frac{\mathrm{ThO}_{2}}{\mathrm{~W}_{\mathrm{Th}}}=\left\{\exp \left({ }^{232} \mathrm{Tht}\right)-1\right\} \\
& +\frac{\mathrm{UO}_{2}}{\mathrm{~W}_{\mathrm{U}}}\left[\frac{\exp \left({ }^{235} \mathrm{Ut}\right)+138 \exp \left({ }^{235} \mathrm{Ut}\right)}{139}-1\right] \tag{2}
\end{align*}
$$

where W symbolizes the gram-molecular weight of each oxide $\left(\mathrm{W}_{\mathrm{Pb}}=224, \mathrm{~W}_{\mathrm{Th}}=264, \mathrm{~W}_{\mathrm{U}}=270\right)$. λ is the decay constant of each isotope ($\lambda_{232}=4.9475 \times 10^{-11} \mathrm{yr}^{-1}, \quad \lambda_{235}=9.8485 \times 10^{-10}$ yr^{-1} and $\lambda_{238}=1.55125 \times 10^{-10} \mathrm{yr}^{-1}$ according to Steiger and Jager, 1977). Although the solution of the complex equation for age (t) is given in different forms by each researcher (e.g. Bowles 1990: Suzuki and Adachi, 1990), the results are the same.

In younger granites the age is roughly calculated using the equation (1) of Holmes (1931) or, as

Fig. 3. Correlation of $\mathrm{Y}_{2} \mathrm{O}_{3}$ content and total other REE content in uraninite and thorite.
far as uraninite is concerned, the age may be calculated as $\mathrm{PbO} \times 80(\mathrm{Ma})$ as discussed later. This shows that the standard deviation of each analytical point depends on the count statistics of Pb .

d: Zircon age (SHRIMP method)

Zircon grains from the samples and the zircon standard QGNG, with a TIMS U/Pb age of $1850 \pm 2 \mathrm{Ma}(2 \sigma)$, were cemented in an epoxy resin and polished until their centers were largely exposed on a flat surface. $\mathrm{U}-\mathrm{Pb}$ dating was performed using a SHRIMP II installed at Hiroshima University, Japan. Instrumental conditions and measurement procedures are described in Sano et al. (2000). The spot size of the primary ion beam was about $20 \mu \mathrm{~m}$. Both back-scattered images and cathodoluminescense images were used to select sites for SHRIMP analysis. The ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ratios of the samples were calibrated using the empirical relationship described by Claoue-Long et al. (1995). In this procedure, it is essential to subtract initial Pb from measured Pb to estimate the age accurately. The measured ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ ratio was used for the correction of initial Pb , whose isotopic composition was assumed using a single-stage model (Compston et al., 1984).

Results

Data for U, Th and Pb in each analytical point for the age analyses are listed in Table 3. After age was obtained from each point, all the data in the granitic rock were summarized as an average and standard deviation. The standard deviation is usually 1 sigma calculated from a Gaussian distribution in probability theory. All the age data of eleven granitic rocks in the Japanese Islands are summarized in Table 1 as well as the results by SHRIMP analyses.

Thorite was found in most of the granitic rocks in the Japanese Islands. All the samples in Table 1 contained thorite but most of them were altered strongly into hydrous thorite, especially in the old rocks. Hence, thorite age was obtained only from the young granitic rocks. The standard de-

Table 3. $\mathrm{UO}_{2}, \mathrm{ThO}_{2}, \mathrm{PbO}$ contents and age for each analytical point in uraninites and thorites in the granitic rocks.

Uraninite in Hida 98112501					Uraninite in Hida 98092910				Uraninite in Ashio Ashi-2				
	UO_{2}	ThO_{2}	PbO	age (Ma)	$\text { spot } \mathrm{UO}_{2}$	ThO_{2}	PbO	age (Ma)		UO_{2}	ThO	PbO	age (Ma)
	87.88	6.69	2.86	233.7 Average	No. ${ }^{\text {a }}$	ThO_{2}	Pbo	age (Ma)			ThO_{2}	PbO	age (Ma)
2	89.11	6.87	2.92	235.2232 .6	$23 \quad 83.42$	5.19	2.422	209.6		91.90	3.70	1.264	100.6
3	88.65	6.69	2.94	238.1 error (1σ)	Uraninite in	Hida 9	904210			91.16	4.20	1.221	97.8
4	87.93	6.49	2.94	239.93 .9	spot					93.07	3.57	1.266	99.6
5	87.79	7.24	2.88	234.8	No.			age (Ma)		93.18	3.83	1.236	97.0
6	87.89	6.58	2.93	239.4	181.42	11.95	2.267	196.3 Average		91.14	3.40	1.230	98.9
7	88.36	7.08	2.732	221.8	281.35	11.88	2.288	198.2198 .9		91.21	2.68	1.239	99.7
8	87.00	8.63	2.83	231.8	380.56	12.01	2.237	195.6 error (1 σ)		91.38	3.67	1.250	100.1
9	86.45	7.87	2.879	237.7	481.38	11.28	2.299	199.52 .6		90.86	2.81	1.258	101.6
10	89.13	7.54	2.82	226.5	582.15	10.58	2.338	201.6		90.51	4.76	1.241	99.9
11	88.34	7.58	2.782	225.4	682.77	8.27	2.289	197.7		89.53	5.13	1.272	103.4
12	87.06	8.51	2.82	230.9	783.55	8.41	2.301	196.8	Uran	ninite	Yana	2072	
13	87.81	8.58	2.82	229.1	883.97	8.73	2.380	202.2					
14	86.89	8.62	2.892	237.0	982.60	9.07	2.349	202.5		UO_{2}	ThO_{2}	PbO	age (Ma)
15	87.80	8.47	2.922	237.2	Uraninite in	Hida 9	810030		1	87.09	9.84	1.127	93.0 Average
16	84.03	11.70	2.80	234.5	spot				2	88.55	9.77	1.148	93.392 .9
17	82.64	12.29	2.64	225.2	No.	Th		(Ma)	3	88.45	10.11	1.126	91.5 error (1σ)
18	83.62	11.24	2.770	233.5	186.24	7.38	2.236	186.3 Average	4	89.82	9.45	1.157	92.91 .2
19	85.60	8.67	2.819	234.4	285.46	7.86	2.267	190.2189 .6	5	90.14	7.60	1.191	95.8
20	85.54	8.77	2.77	231.1	385.14	7.94	2.246	189.1 error (1σ)	6	92.58	7.68	1.171	91.8
21	87.12	7.42	2.87	235.7	483.35	8.49	2.256	193.44 .0	7	92.13	7.73	1.142	89.9
22	83.66	8.98	2.80	238.1	584.09	7.97	2.285	194.6	8	92.44	6.93	1.172	92.2
23	85.68	6.91	2.74	229.6	681.67	8.30	2.206	193.0	9	90.52	8.35	1.179	94.3
24	85.42	7.87	2.72	227.4	782.06	8.37	2.084	181.7		90.82	8.05	1.171	93.4
25	85.62	7.49	2.76	230.5	883.99	8.56	2.205	187.7		90.95	7.84	1.150	91.7
26	84.65	8.11	2.74	230.9	Thorite in K	itakam	SK53		12	92.68	7.21	1.171	91.8
27	86.55	8.93	2.82	231.9	spot					90.84	7.50	1.161	92.8
28	82.41	8.07	2.61	226.1	No. ${ }^{\text {a }}$	ThO	PbO	age (Ma)	14	91.85	7.73	1.160	91.6
29	82.98	9.73	2.73	233.3	114.98	59.76	0.531	116.9 Average	15	92.38	7.86	1.171	91.9
30	89.70	6.26	2.893	231.8	215.60	59.97	0.524	113.2117 .0	16	90.98	8.34	1.170	93.0
31	87.10	6.72	2.83	233.8	316.29	57.94	0.576	124.0 error (1σ)	17	92.78	7.29	1.172	91.8
32	88.58	6.87	2.86	231.8	416.56	59.68	0.565	118.86 .6	18	88.34	10.12	1.126	91.6
33	88.23	6.58	2.903	236.0	516.60	59.66	0.572	120.1		89.89	9.24	1.159	93.0
34	88.54	7.04	2.88	233.1	621.79	52.76	0.636	123.0	20	86.43	10.40	1.137	94.3
35	85.49	10.03	2.79	231.2	722.68	54.24	0.593	110.9		89.25	9.52	1.167	94.2
36	88.01	6.77	2.87	234.1	827.22	48.38	0.594	104.0	22	86.96	10.20	1.146	94.6
37	88.24	7.41	2.85	231.4	928.09	46.99	0.707	122.3		88.01	10.15	1.147	93.6
38	83.67	10.52	2.72	230.4	Uraninite in	Kitaka	mi SK5	53	24	87.93	10.06	1.136	92.9
	83.77	10.08	2.75	233.0	spot UO_{2}					88.28	9.78	1.146	93.4
40	87.26	6.41	2.812	231.4	No. UO_{2}	ThO_{2}	PbO	age (Ma)		89.39	9.26	1.158	93.4
	87.72	6.65	2.87	234.9	188.25	7.47	1.392	113.7 Average		88.39	9.24	1.128	92.0
42	88.03	8.55	2.88	233.5	288.47	7.68	1.424	115.9115 .1	28	89.81	9.45	1.149	92.2
	86.67	9.06	2.87	235.6	388.50	7.54	1.385	112.8 error (1 σ)		88.61	9.65	1.138	92.5
44	88.26	6.13	2.87	234.0	488.75	7.68	1.444	117.11 .9	30	87.80	10.59	1.146	93.7
45	88.91	7.11	2.83	228.4	588.76	8.19	1.404	113.7		87.02	10.33	1.135	93.6
46	88.86	6.96	2.89	233.5	690.21	6.90	1.436	115.0	32	87.98	10.09	1.146	93.6
Uraninite in Hida 98092910					790.48	7.15	1.477	117.8	33	86.81	10.35	1.134	93.8
spot					Uraninite in	Ashio	Ashi-2		Uran	ninite in	Ikoma		
		ThO_{2} 8.62	2.24	209.9 Average	$\begin{aligned} & \text { spot } \mathrm{UO}_{2} \\ & \text { No. } \end{aligned}$	ThO_{2}	PbO	age (Ma)		UO_{2}	ThO_{2}	PbO	age (Ma)
2	80.97	6.46	2.358	209.1204 .4	191.92	4.82	1.245	98.7 Average		96.11	2.17	1.093	84.1 Average
3	81.90	5.29	2.336	205.8 error	292.37	4.67	1.222	96.599 .2	2	95.73	2.19	1.103	85.285 .8
4	78.16	9.83	2.276	206.34 .3	392.78	4.25	1.235	97.2 error (1σ)	3	95.51	2.38	1.103	85.3 error (1σ)
5	83.02	5.98	2.33	202.5	492.76	4.25	1.245	98.01 .7	4	94.96	2.63	1.122	87.30 .8
6	81.47	7.77	2.34	205.4	592.66	2.94	1.262	99.9	5	96.20	2.22	1.124	86.4
7	82.26	7.02	2.398	209.0	691.64	2.91	1.258	100.7	6	96.38	2.12	1.124	86.3
8	79.36	7.57	2.326	209.5	791.27	3.74	1.270	101.7	7	96.48	1.89	1.113	85.4
9	83.85	6.33	2.348	201.5	891.25	3.65	1.209	97.0	8	96.56	1.98	1.123	86.1
10	86.70	5.39	2.44	203.7	991.42	4.24	1.242	99.2		96.74	2.10	1.123	85.9
11	84.44	5.37	2.32	198.5	1091.96	3.88	1.254	99.7	Uran	ninite in	Tsuku	a Z4	
12	82.77	6.32	2.42	210.5	1191.62	4.39	1.213	96.6					
13	84.65	5.56	2.41	206.0	1291.04	4.34	1.234	98.9	No.	UO_{2}	ThO_{2}	PbO	age (Ma)
14	85.97	5.54	2.40	202.1	1390.16	2.44	1.225	99.8	10	96.06	1.84	1.114	85.8
15	83.47	5.79	2.332	201.5	1490.30	3.16	1.246	101.0	1	87.53	8.50	0.792	65.2 Average
16	84.09	5.37	2.38	204.3	1590.50	2.43	1.223	99.3	2	84.15	5.17	0.758	65.666 .5
17	81.94	6.87	2.286	200.3	1692.88	3.57	1.236	97.4	3	88.82	6.85	0.810	66.2 error (1σ)
18	88.07	4.96	2.34	193.1	1793.86	3.40	1.297	101.2	4	87.47	6.85	0.798	66.21 .1
19	86.74	6.18	2.448	203.4	1891.62	4.98	1.212	96.4	5	86.03	7.81	0.804	67.5
20	85.84	5.80	2.378	199.9	1991.57	4.77	1.254	99.8	6	88.14	8.15	0.836	68.5
21	83.54	5.76	2.38	205.5	$20 \quad 93.27$	3.40	1.255	98.6	7	88.05	8.04	0.813	66.7
22	85.04	6.07	2.40	203.6	2192.57	3.49	1.257	99.5	8	87.83	8.08	0.800	65.8

Table 3. (Continued)

Thorite in Yamanashi S-9					Thorite in Yamanashi S-6					Uraninite in Hida T-2					
	UO_{2}	ThO_{2}	PbO	age (Ma)		UO_{2}	ThO_{2}	PbO	age (Ma)		UO_{2}	ThO_{2}	PbO	(Ma)	
1	10.84	70.43	0.058	13.1 Average	39	17.95	64.00	0.023	4.4	1	81.56	7.13	0.029		Average
2	17.65	63.55	0.050	10.012 .1	40	16.81	64.49	0.015	3.1	2	84.56	7.34	0.032	2.7	2.4
3	27.87	53.24	0.069	11.6 error (1σ)	41	15.11	66.98	0.024	4.9	3	81.89	7.06	0.027	2.4	error (1σ)
4	11.56	69.40	0.052	11.71 .5	42	12.32	64.59	0.015	3.4	4	80.88	10.54	0.017		
5	17.11	63.72	0.067	13.6	43	23.32	57.37	0.030	5.4	5	84.58	7.33	0.040	3.5	
6	12.12	69.06	0.045	10.1	44	22.75	57.78	0.025	4.6	6	82.97	7.49	0.034	3.0	
7	11.73	69.98	0.052	11.6	45	22.66	57.47	0.027	4.9	7	81.23	7.63	0.040	3.6	
8	10.95	69.68	0.049	11.1	46	20.20	60.94	0.024	4.5	8	83.72	7.13	0.026	2.3	
9	9.61	72.15	0.050	11.6	47	21.14	60.85	0.031	5.8	9	84.76	6.60	0.024	2.1	
10	12.52	68.31	0.048	10.5	48	16.70	63.87	0.033	6.8	10	82.20	9.68	0.035	3.1	
	27.87	52.93	0.067	11.4	49	14.43	67.85	0.022	4.6	11	82.68	10.11	0.029	2.5	
12	28.03	52.17	0.075	12.6	50	15.83	66.38	0.028	5.7	12	82.48	9.84	0.020	1.8	
13	28.30	52.30	0.070	11.8	51	15.62	66.72	0.031	6.3	13	83.46	8.19	0.030	2.6	
14	8.98	71.92	0.040	9.5	52	13.45	69.52	0.017	3.6	14	83.93	7.17	0.022	1.9	
15	15.43	65.66	0.067	13.9	53	20.52	60.65	0.027	5.0	15	84.12	7.54	0.023	2.0	
16	8.80	72.73	0.047	11.1	56	10.03	73.13	0.024	5.3	16	81.15	7.41	0.026	2.3	
17	16.01	64.78	0.051	10.6	57	17.63	66.01	0.018	3.6	17	80.66	8.41	0.021	1.9	
18	5.38	76.15	0.041	10.4	58	11.53	71.45	0.029	6.4	18	83.21	6.72	0.024	2.1	
19	5.54	74.83	0.054	13.8	59	22.69	58.43	0.021	3.8	19	82.96	7.14	0.026	2.3	
20	27.83	52.42	0.074	12.6	60	14.66	67.86	0.022	4.5	20	82.81	7.31	0.015	1.3	
	28.87	51.73	0.082	13.7	61	18.17	63.86	0.024	4.7	21	80.34	10.47	0.029	2.6	
22	28.69	51.86	0.089	14.9	62	16.40	65.46	0.033	6.7	22	80.45	8.69	0.032	2.9	
23	13.21	67.65	0.056	12.3	63	16.10	65.74	0.019	3.8	23	80.22	10.18	0.015	1.3	
24	10.89	69.68	0.057	12.9	64	22.81	56.77	0.027	4.9	24	79.97	9.36	0.028	2.6	
25	10.75	69.84	0.060	13.7	65	15.74	66.14	0.025	5.0	25	83.49	6.57	0.038	3.3	
	10.89	70.05	0.050	11.4	66	16.22	65.98	0.020	4.1	26	82.96	5.31	0.033	2.9	
27	10.98	69.55	0.053	12.2	67	12.49	70.23	0.023	5.1	27	82.39	7.71	0.027	2.4	
28	9.17	71.92	0.064	15.2	68	14.06	68.31	0.031	6.6	Thor	rite in H	ida T-2			
29	20.47	60.15	0.070	13.3	69	14.88	67.92	0.026	5.3	spot					
Thor	rite in	Yamanas	hi S-6		70	13.16	68.88	0.024	5.1		UO_{2}	ThO_{2}	PbO	(M	
spot	UO_{2}				71	18.14	64.47	0.022	4.3	1	11.55	63.24	0.015		Average
	UO_{2}	ThO_{2}	PbO	age (Ma)	72	12.41	70.40	0.020	4.2	2	14.91	62.00	0.005		3.4
1	21.83	58.34	0.032	6.0 Average	73	18.70	62.95	0.022	4.2	3	16.12	62.50	0.013	2.7	error (1σ)
2	22.75	58.02	0.022	4.14 .8	74	14.82	67.16	0.020	4.2	4	15.34	57.16	0.015	3.3	
3	12.42	69.77	0.036	7.9 error (1σ)	75	12.12	70.04	0.021	4.5	5	13.73	63.36	0.016	3.5	
4	15.39	66.84	0.019	3.91 .1	76	23.06	57.56	0.016	2.9	6	21.01	53.58	0.019	3.9	
5	15.70	65.82	0.012	2.4	77	20.35	60.39	0.029	5.5	7	16.07	60.75	0.014	3.1	
	18.29	63.44	0.019	3.7	78	23.86	56.35	0.027	4.9	8	15.28	61.93	0.021	4.5	
7	9.44	72.89	0.019	4.4	79	18.73	63.08	0.024	4.6	9	77.73	7.02	0.034	3.2	
8	12.37	70.09	0.026	5.7	80	23.30	58.02	0.022	3.9	10	18.73	60.40	0.014	2.7	
9	21.81	57.07	0.038	7.1	81	9.80	72.49	0.020	4.6	11	12.80	67.40	0.009	2.1	
	23.38	56.77	0.033	6.1	82	16.77	65.39	0.016	3.3	12	26.26	51.00	0.017	3.1	
11	13.47	69.83	0.020	4.2	83	11.65	71.59	0.022	4.8	13	15.86	60.43	0.018	3.9	
	13.14	69.14	0.012	2.5	84	12.76	69.78	0.025	5.4	14	13.41	65.32	0.020	4.3	
13	11.26	71.48	0.017	3.7	85	16.62	64.62	0.018	3.7	15	11.55	64.82	0.025	5.9	
	17.40	63.68	0.027	5.4	86	13.19	69.07	0.030	6.5	16	20.71	56.36	0.017	3.4	
15	10.47	71.63	0.024	5.4	87	11.27	71.35	0.026	5.8	17	17.12	59.57	0.015	3.1	
16	14.55	65.29	0.022	4.8	88	13.90	68.46	0.023	4.9	18	18.28	58.67	0.015	3.1	
17	9.78	73.22	0.008	1.9	89	21.57	59.10	0.027	5.0	19	18.00	60.65	0.021	4.3	
18	13.02	69.80	0.027	5.8	90	14.72	67.04	0.022	4.6	20	15.67	57.43	0.023	5.2	
19	12.62	64.87	0.021	4.8	91	11.94	70.20	0.025	5.4	21	20.76	55.06	0.014	2.7	
20	20.94	53.85	0.028	5.5	92	12.90	69.29	0.016	3.4	22	15.86	61.19	0.009	2.0	
21	10.84	72.06	0.021	4.6	93	12.36	69.93	0.015	3.2	23	23.34	53.84	0.025	4.7	
22	10.66	72.27	0.020	4.6	94	22.28	58.74	0.020	3.7	24	20.18	57.47	0.009	1.7	
23	18.38	43.85	0.011	2.7	95	24.41	56.60	0.036	6.3	25	11.63	63.03	0.015	3.6	
24	15.47	66.30	0.025	5.1	96	12.56	69.76	0.025	5.4						
25	12.83	69.63	0.022	4.7	97	15.92	66.33	0.029	5.9						
26	15.79	66.67	0.029	5.9	Uran	ninite in	Yaman	ashi S-6							
27	21.63	59.01	0.029	5.5											
28	22.05	56.18	0.019	3.5	No.	UO_{2}	ThO_{2}	PbO	age (Ma)						
29	21.00	59.87	0.027	5.1	1	83.28	8.21	0.066	5.7 Av						
30	21.21	57.65	0.031	5.8	2	83.84	9.30	0.061	5.35 .2						
31	16.62	65.54	0.029	5.8	3	85.16	7.90	0.061	5.2 err						
32	11.88	70.57	0.019	4.2	4	85.69	9.57	0.062	5.20 .7						
33	10.31	72.60	0.010	2.2	5	86.25	9.21	0.070	5.9						
34	15.63	66.63	0.021	4.3	6	90.18	9.81	0.050	4.0						
35	15.90	65.96	0.033	6.8											
36	17.20	65.34	0.021	4.1											
37	13.03	69.54	0.023	5.0											
38	22.72	58.04	0.037	6.8											

viation for uraninite was much lower than that of thorite, simply due to the very high U content which produced radiogenic Pb . Hurtado et al. (2007) obtained 0.04 Ma as 2σ for 18 Ma uraninite. Numerically, the error depends on the probe current, measurement time and number of analyses. In addition, error may depend on machine drift, standard material conditions and surface conditions. In the present study, the standard deviations of uraninites were found to be around 4 Ma at around $200 \mathrm{Ma}, 1 \mathrm{Ma}$ at 66 Ma and less than 1 Ma at 2.4 Ma and 5.2 Ma , comparable to those obtained by the isotopic methods.

Correlation of the EPMA and isotopic ages is presented in Fig. 4, showing a concordant relationship between them. The coincidence of the ages is evidence that EPMA age is comparable to
those yielded by the isotopic methods. Using the same machine in the National Museum of Nature and Science and the same analytical conditions,

Fig. 4. Correlation of ages obtained by EPMA and isotopic methods.

Fig. 5. A \& B: Partly recrystallized uraninite in the grey granite from the Hida Terrane (KM1331-1). C: the oldest uraninite, 2.46 Ga , included in a monazite grain from the Yellow River.
such a concordant relationship had previously been reported for uraninite and huttonite in India (Santosh et al. 2003) and thorianite $\left(\mathrm{ThO}_{2}\right)$ in Bohemian Massif (Naemura et al. 2008). Huttonite is a monoclinic polymorph of thorite. In India, uraninite and huttonite grains in gneiss, granulite and granite are zoned in the same range from 460 to 580 Ma as the coexisting monazite. In Bohemian Massif, the EPMA age of thorianite in peridotite was $333.8 \pm 4.5 \mathrm{Ma}$, quite comparable with the values of $338 \pm 1 \mathrm{Ma}$ and 339.8 ± 2.6 Ma obtained by isotopic methods for the associated granulites. As a rare case, we found uraninite included in monazite grain from the river sands (Fig. 5). The uraninite age was determined to be 2.46 Ga , slightly lower than the monazite age from 2.5 to 2.56 Ga .

During study of the other granitic rocks in the Japanese Islands, bimodal age distributions of uraninite have been occasionally found. Age data of grey granite from the Hida Terrane are shown in Fig. 5 and 6. One uraninite grain exhibited ages of $191 \pm 1.8 \mathrm{Ma}$ and $233 \pm 3.4 \mathrm{Ma}$. The zoning texture of this sample has not been recognized, but high and low Pb areas are distributed in a patchy fashion. Any micro-scale diffusion between these areas has not been observed. The older age is similar to that of coexisting monazite age at $237 \pm 6.8 \mathrm{Ma}$ (Fig. 6).

Fig. 6. Bimodal age distribution of uraninite in the grey granite from the Hida Terrane (KM1331-1). Associated monazite is similar in age to the older uraninite.

Discussion

Age data obtained by EPMA analyses are consistent with those of the isotopic methods. Standard deviation of the derived ages is around 1 Ma in the range from 1.5 to 100 Ma , comparable with that of SHRIMP dating. The EPMA system is the most commonly used machine for mineral analyses and has high spatial resolution, i.e. 1-2 μ, compared with $10-20 \mu$ of SHRIMP. Although uraninite and thorite are trace minerals and occur in selected rocks, it is more preferable to use young granite with uraninite or thorite. The coincidence also supports the assumption that the initial Pb content is negligible in the minerals at the time of the mineral crystallization, as stated first by Holmes (1911). As reported in previous studies using the same machine, this method is also applicable to thorianite and huttonite (Naemura et al., 2007: Santosh et al., 2003).

Granitic rocks have a thermal history, i.e. cooling or overprinting by later stage granite. Hence, the age result cannot be accepted simply as the representative age of the igneous stage. Since in general the closure temperature of zircon is around $900^{\circ} \mathrm{C}$, it has been considered that the SHRIMP age of zircon in granitic rock shows the age of an early plutonic event. Monazite has also high closure temperature, i.e. around $800^{\circ} \mathrm{C}$. On the other hand, there is no experimental datum about the closure temperature of uraninite and thorite. In the grey granite from the Hida Terrane (Fig. 6), uraninite has bimodal age distribution and monazite is consistent with the older of the two ages. These facts apparently show that uraninite is lower in closure temperature than monazite. However, uraninite grains in gneiss and granulite from India are similar in range to the associated monazite (Santosh et al., 2003). Although a few problems including closure temperature and meaning of the obtained age have not solved, the age data by EPMA are reliable.

Many researchers have reported the ages of minerals such as monazite and uraninite analyzed using EPMA, assuming that their initial Pb contents were negligible. It is amazing that the pre-
sent method is essentially the same as that developed first by Holmes (1911). The ages obtained by the simplified calculation of Holmes (1931) are similar for thorite and higher for uraninite than those given by the present complex calculation (Fig. 7). The difference is mainly due to the effect of ${ }^{235} \mathrm{U}$. In 1931, ${ }^{235} \mathrm{U}$ content in total U was estimated to be less than 0.28%, far less than the present accepted value, 0.72%. In uraninite, a more simplified equation from equation (1) is

Age (Ma) $=80 \times \mathrm{PbO}(\mathrm{wt} \%)$
This is only applicable to young uraninite (Fig. 8). This simplified equation is also similar to that presented by Holmes (1911), i.e. age $=8200 \times$ $\mathrm{Pb} / \mathrm{U}(\mathrm{Ma})$ where Pb and U are $\mathrm{wt} \%$. This simple equation means that the standard deviation is totally dependent on the error of Pb analyses. In

Fig. 7. Relationships between present age calculation and simplified age of Holmes (1931) for uraninite and thorite. Pb, U, and Th as $\mathrm{wt} \%$.

Fig. 8. Relationships between present age calculation and simplified age, $80 \times \mathrm{PbO}$, for uraninite. PbO as $\mathrm{wt} \%$.
our normal analytical conditions for uraninite and thorite, the standard deviation is around 1 Ma for the samples dating from less than 100 Ma. High probe current and measurement time will reduce the error.

Acknowledgements

We wish to express our thanks to Prof. M. Akaogi and Prof. T. Kawasaki for syntheses of UO_{2} and ThO_{2} and also to Prof. K. Kunugiza for giving us granitic rocks from the Hida Terrane.

References

Bowles, J. F. W. (1990) Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chemical Geology, 83: 47-53.
Claoue-Long, J. C., Compston, W., Roberts, J. and Fanning, C. M. (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analysis. In Geochronology, Time Scales and Global Stratigraphic Correlation (Berggren, A., Kent D. V., Aubly, M.-P., Hardenbol, J. Eds). Society for sedimentary Geology Special Publication, 54, Society for Sedimentary Geology, Tulsa, USA, 3-21.
Compston, W., Williams, I. S. and Meyer, C. (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89: Supplement, B525-534.
Foster, G., Kinny, P., Vance, D., Prince, C. and Harris, N. (2000a) The significance of monazite $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ age data in metamorphic assemblages: A combined study of monazite and garnet chronology. EPSL, 181: 327-340.
Foster, H. J., Harlov, D. E. and Milke, R. (2000b) composition and $\mathrm{Th}-\mathrm{U}$-total Pb ages of huttonite and thorite from Gillespie's beach, Soouth island, New Zealand. Canadian Mineralogist. 38: 675-684.
Holmes (1911) The association of lead with uranium in rock minerals and its application to the measurement of geological time. Proc. Roy. Soc., London, A 85: 248-256.
Holmes, A. (1931) Radioactivity and geological time. Bull. National Research Council., 80: 124-459.
Holmes, A. (1960) A revised geological time-scale. Transactions of the Edinburgh Geological Society, 17: 183-215.
Hurtada, H., Chatterjee, N., Ramezani, J., Hodges, K. and Bowring, S. (2007) Electron microprobe chemical dat-
ing of uraninite as a reconnaissance tool for leucogranite geochronology. Nature Precedings 〈http://hdl.handle.net/10101/npre.2007.655.1 \rangle
Iimori, T. (1941) The microgranular uraninite from Iisaka and its geologic age. Scientifc paper of Inst. Phy. Chem. Research, 89: 208-210.
Kawano, Y. and Ueda, Y. (1966) K-Ar dating on the igneous rocks in Japan (IV)-Granitic rocks in northeastern Japan. J. Min. Petr. Econ. Geol., 56: 41-55. (in Japanese with English abstract).
Montel, J. M., Doret, S., Veschambre, M., Nicollet, C. and Provpst, A. (1996) Electronic dating of monazite. Chemical Geology, 131: 37-53.
Nagashima, O. and Nagashima, K. (1960) Rare element minerals in Japan. Koubutsu shumino kai press. (in Japanese)
Naemura K., Yokoyama, K., Hirajima, T. and Svojtka, M. (2008) Age determination of thorianite in phlogopitebearing spinel-garnet peridotite in the Gföhl Unit, Moldanubian Zone of the Bohemian Massif. Journal of Mineralogical and Petrological Sciences, 103: 285-290.
Pyle, J. M., Spear, F. S., Wark, D. A., (2002). Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Phosphates: Geochemical, Geobiological and Materials Importance, Reviews in Mineralogy and Geochemistry, 337-362.
Sakashima, T., Terada, K., Takeshita, T. and Sano, Y. (2003) Large-scale displacement along Median Tectonic Line, Japan: evidence from SHRIMP zircon U-Pb dating of granites and gneiss from the South Kitakami and paleo-Ryoke belt. Journal of Asian Earth Science, 21: 10199-1039.
Sano, Y., Hidaka, H., Terada, K., Shimizu, H. and Suzuki, M. (2000) Ion microprobe $\mathrm{U}-\mathrm{Pb}$ zircon geochronology of the Hida gneiss: Finding of the oldest minerals in Japan. Geochemical Journal 34: 135-153.
Sano, Y., Tsutsumi, Y., Terada, K. and Kaneoka, I. (2002) Ion microprobe $\mathrm{U}-\mathrm{Pb}$ dating of Quaternary zircon: implication for magma cooling and residence time. J. Volcanol. Geotherm. Res. 117: 285-296.

Santosh, M., Yokoyama, K., Biju-Sekhar, S. and Rogers, J. J. W., (2003) Multiple tectonothermal events in the granulite blocks of Southern India revealed from EPMA dating: Implications on the history of supercontinents. Gondwana Research 6: 29-63.
Santosh, M., Morimoto, T. and Tsutsumi, Y. (2006) Geochronology of the khondalite belt of Trivandrum Block, Southern India: Electron probe age and implications for Gondwana tectonics. Gondwana Research, 9: 261-278.
Shibata, K., Kato, Y. and Mimura, K. (1984) K-Ar ages of granites and related rocks from the northern Kofu area. Bull. Geol. Surv. Japan, 35: 19-24. (in Japanese with English abstract)
Steiger, R. H. and Jäger, E. (1977). Subcommission on geochronology: convention on the use of decay constants on geo- and cosmochronology. Earth and Planetary Science Letters, 36: 359-362.
Uchiumi, S. Uto, K. and Shibata, K. (1990) K-Ar age re-sults-3-New data from the Geological Survey of Japan. Bull. Geol. Surv. Japan, 41: 567-575. (in Japanese with English abstract)
Watanabe, T., Ireland, T, Tainosho, Y. and Nakai, Y. (2000) Zircon U-Pb sensitive high mass-resolution ion microprobe dating of granitoids in the Ryoke metamorphic belt, Kinki District, Southwest Japan. Island Arc, 9: 55-63.
Watanabe, T., Fanning, C. M., Uruno, K. and Kano, H. (1995) Pre-Middle Silurian granitic magmatism and associated metamorphism in northern Japan: SHRIMP UPb zircon chronology. Geological Journal, 30: 273-280.
Williams, M. L., Jercinovic, M. J. and Terry, M. (1999) Age mapping and dating of monazite on the Electron microprobe deconvoluting multistage tectonic histories. Geology, 27: 1023-1026.
Yokoyama, K., Tsutsumi, Y., Nhung, N. T. and Quynh, P. V. (2010) Age distribution of monazites from the nine rivers of Vietnam. Mem. Natl. Mus. Nat. Sci., Tokyo, 46: 97-108.

[^0]: *: number of analysed spot

