Pararealgar and Alacranite from the Nishinomaki Mine, Gunma Prefecture, Japan

Satoshi Matsubara and Ritsuro Miyawaki

Department of Geology and Paleontology, National Science Museum, 3–23–1, Hyakunin-cho, Shinjuku, Tokyo 169–0073, Japan

Abstract Pararealgar and alacranite are found in the arsenic ore from the Nishinomaki mine, Gunma Prefecture, Japan. The unit cell parameters calculated by powder X-ray diffraction data are a=9.925(2), b=9.695(2), c=8.504(2) Å, $\beta=97.1(1)^{\circ}$ for pararealgar, and a=9.941(2), b=9.398(2), c=8.910(2) Å, $\beta=102.0(1)^{\circ}$ for alacranite. Both minerals are yellow with resinous luster, and often occur as mixture on the surface of realgar. They may be formed secondarily under the exposing of realgar by sunlight.

Key words: pararealgar, alacranite, realgar, Nishinomaki mine.

Introduction

During the examination of the Sakurai Mineral Collection, we recognized the specimen from the Nishinomaki mine labeled as pararealgar by late Dr. K. Sakurai. As the occurrence of pararealgar has not been known in Japan, we checked it by the powder X-ray diffraction method to confirm whether the label was correct or not. The result of experiment revealed that the examined materials are composed of realgar, pararealgar and alacranite.

Many phases of As₄S₄ or AsS composition are known as realgar, pararealgar, alacranite, and synthetic α -, β -, γ -, χ -AsS (Bonazzi *et al.*, 1995). However, the mineral name has been confused with the corresponding synthetic material. For instance, realgar is α -AsS (Bonazzi *et al.*, 1995; Strunz and Nickel, 2001) or it is β -AsS (Clark, 1970; Roland, 1972).

Pararealgar was firstly described in two realgar specimens from Mount Washington, Vancouver Island and the Gray Rock property, Lillooet district, British Columbia, Canada (Roberts *et al.*, 1980). It was misidentified as orpiment due to its appearance. Thin orange-yellow coating material on museum specimens of realgar was called as γ -phase, and it is able to form by exposing to infrared radiation (Hall, 1966). Now, γ -AsS is rec-

ognized as pararealgar (Strunz and Nickel, 2001).

The α -phase associated with pararealgar from the original localities is corresponding to the high-temperature AsS synthesized by Roland (1972). The powder X-ray diffraction data closely resemble alacranite, which was named for the first locality, Mina Alacrán, Pampa Larga, Chile (Clark, 1970), by Popova et al. (1986). They reported the data of alacranite as a new mineral from the second locality, the Uson caldera, Kamchatka, Russia. Although they had proposed the ideal chemical formula of alacranite as As₈S₉, Burns and Percival (2001) have determined a new formula, As_4S_4 , on the basis of their crystal structure analyses. Consequently, alacranite is considered as trimorphous with pararealgar and realgar.

The present work is for the description of pararealgar and alacranite as the first occurrence in Japan and for the consideration of the geneses of both minerals.

Occurrence

The Nishinomaki mine is one of the famous localities of realgar and orpiment in Japan, and also is known as the original locality of

Fig. 1. Mixture of pararealgar and alacranite (both are yellow) inverted from realgar (orange) in quartz vein (NSM-M30973). Field view: approximately 4×5 cm.

wakabayashilite (Kato *et al.*, 1970). The mine is situated about 30 km west of Takasaki City, Gunma Prefecture. The hydrothermal quartz veins including As-bearing minerals develop in altered Tertiary andesite. The exact collecting date of the examined specimen (NSM-M30973) is unknown, or we are unable to estimate the exposed time by sunlight. In the specimen yellow powdery material with resinous luster covers the aggregates of minute realgar grains associated with quartz (Fig. 1). Although a weak cleavage is rarely observed in grains supposed to be alacranite, it is difficult to distinguish between pararealgar and alacranite to the naked eye.

X-ray Crystallography

We prepared seven yellow fragments collected from different portions of the specimen. The powder X-ray diffraction patterns were obtained using a Gandolfi camera, 114.6 mm in diameter, employing Ni-filtered Cu $K\alpha$ radiation. In these

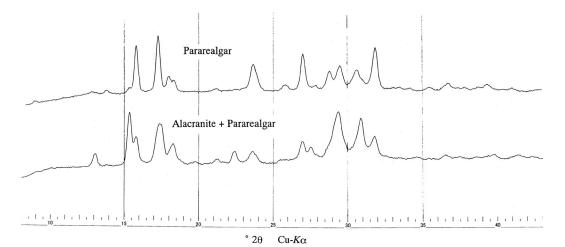


Fig. 2. The powder X-ray diffraction patterns of pararealgar and a mixture of pararealgar and alacranite.

	Nishinon	naki mine		Mount	Washington copp	per deposit
I	d _{obs}	d _{calc}	h k l	Ι	d	h k l
7	9.84	9.85	100			
2	6.89	6.91	1 1 0			
8	6.37	6.37	011			
80	5.59	5.59	111	91	5.56	111
100	5.13	5.13	111	100	5.14	111
25	4.93	4.92	200	29	4.90	200,020
21	4.84	4.85	020			,
3	4.19	4.20	021			
47	3.75	3.75	112	78	3.75	112
10	3.45	3.47	112	27	3.44	112,220,202
		3.45	220			
		3.42	202			
60	3.30	3.30	221	50	3.299	221
4	3.19	3.18	022	3	3.184	022
32	3.10	3.11	310	33	3.105	221
		3.10	221			
40	3.02	3.04	311	51	3.025	202
		3.02	202			
33	2.92	2.92	131	30	2.905	131,212
		2.89	212			-)
70	2.80	2.81	311	71	2.795	222
		2.79	222			
5	2.53	2.53	113,132	18	2.525	231
		2.52	231			
12	2.45	2.46	400	28	2.445	302
		2.45	302			
4	2.38	2.39	410	11	2.377	312
		2.37	312		,	•
10	2.29	2.30	330	30	2.278	223
		2.28	141,223			
4	2.20	2.21	232	11	2.208	232
		2.20	420			
				2	2.106	1 3 3, 0 4 2
12	2.07	2.08	142,241	6	2.069	421
	2.07	2.07	421,114	0	2.007	
15	2.04	2.04	4 2 2, 1 3 3	22	2.030	204
10	2.0.	2.03	204,142		2.000	201
15	1.971	1.974	313	16	1.976	313
10	10/1	1.971	114	10	1070	010
10	1.865	1.865	422	11	1.862	333
10	1.005	1.863	3 3 3	11	1.002	555
5	1.745	1.748	251	6	1.744	251
5	1.7-15	1.743	521	0	1./ 11	201
12	1.719	1.720	$23\overline{4}$	10	1.710	404
10	1.687	1.687	433	11	1.682	530
10	1.007	1.00/	T J J	11	1.002	550

Table 1. X-ray powder diffraction data for pararealgar.

a=9.925, *b*=9.695, *c*=8.504 Å, β =97.1° This study

JCPDS 33-127 a=9.929, b=9.691, c=8.503 Å, $\beta=97.06^{\circ}$ Roberts *et al.*, 1980

AsS.
ic α-∧
ynthetic
and s
cranite and sy
on data for alacrai
a fo
data
ctic
.0
-ray powder
X-ray
i,
Table

			ле	sy	synthetic a-AsS	sS		alacranite		alacı	alacranite	
I	d_{obs}	d _{calc}	h k l	п	q	h k l	-	q	h k l	d _{calc}	h k l	
30	6.77	6.76	1 1 0	10	6.76	110	40	6.89	1 1 0	6.746	110	
100	5.76	5.76	$1 1 \overline{1}$	80	5.75	$1 1 \overline{1}$	90	5.91	$1 1 \overline{1}$	5.751	$1 1 \overline{1}$	
70	5.02	5.01	111	40	5.01		80	5.11	111	5.000		
38	4.85	4.86	2 0 0	20	4.85	0				4.863	200	
				20	4.69	$0\ 2\ 0$	30	4.87	\sim	4.683	\sim	
10	4.15	4.14	$0\ 2\ 1$	20	4.15		10	4.25	$0\ 2\ 1$	4.125	\sim	
23	3.95	3.93	$1 \ 1 \ \overline{2}$	70	3.93	-	70	4.05	-	3.927		
4*	3.44	3.45	112	10	3.44					3.441	-	
				5	3.39	\sim				3.373	\sim	
37*	3.31	3.32		10	3.33	\sim	30	3.38	\sim	3.311	\sim	
20	3.19	3.20	022	80	3.20		50	3.291	0 2 2	3.190	\sim	
85	3.05	3.07	-	70	3.08	-	100	3.064	-	3.086	-	
										3.064	-	
				100	3.01	130				2.973	ŝ	
				30	2.95	0				2.954	0	
58	2.88	2.88	$1\ 3\ \overline{1},\ 2\ 2\ \overline{2}$	100	2.89		90	2.950	222	2.875 2.870	2 2 <u>7</u> 1 3 <u>1</u>	
38*	2.81	2.82	$1 \ 1 \ \overline{3}$	60	2.82	$1 \ 1 \ \overline{3}$	20	2.903	$1 \ 1 \ \overline{3}$	2.819	, –	
				10	2.76	$3 \ 1 \ \overline{2}$				2.776	-	
7	2.74	2.73	311	10	2.74					2.727	-	
							30	2.707	$3 2 \overline{1}^{**}$	2.680	\sim	
							20	2.606	\mathfrak{c}	2.532	\mathfrak{c}	
				30	2.53	-				2.538	-	
8	2.51	2.50	222	20	2.50	\sim				2.498	2	
				5	2.47	\sim				2.468	2	
				10 30	2.44 2 30	400 くっぽ	20	2.419	400	2.431		
				2	(0.4	1	20	2.346	041	2.261	14	
8	2.26	2.26					Ì			2.258	ŝ	
		2.25	3 3 0	20	2.25	3 3 0	10	2.286	3 3 0	2.249	\mathcal{C}	
							30	2.224	\mathfrak{c}	2.147	\mathfrak{C}	
				20	2.21	$4 2 \overline{1}$				2.191		
2	2.18	2.18	004			1" ,				2.178	0	
				20	2.17	114	00	991 C		2.166 2.158	- r	
				00	215	2 U Z	70	7.100	1	2.1J0 7 163		
				70	2.17	>				C01.7	>	

Satoshi Matsubara and Ritsuro Miyawaki

alacranite	d _{calc} h k l	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.010 4.2.1 1.991 1.1.4	C 2/c a=9.943, $b=9.366$, $c=8.908$ Å, $\beta=102.007^{\circ}$ Burns & Percival, 2001 D-values are calculated by the unit cell.
	h k l	042	421	13 Å, <i>ll</i> ., 1986 ace group
alacranite	q	2.136	2.017	JCPDS 42-537 C 2/c a=9.89, b=9.73, c=9.13Å, $\beta=101.84^{\circ}$ Popova <i>et al.</i> , 1986 **: not permitted by space group
	I	20	20	JCPDS 4 C 2lc a = 9.89, $\beta = 101.8$ **: not p
 SS	h k 1	2 4 Ī	114	:=8.91 Å, 1, 1972
synthetic a-A	q	2.11	2.01	S 25-57 ≥ 92, <i>b</i> =9.48, 0 01.83° Roland
	-	-	Sr i	· · · ·
	h k l			dmixed parareal
omaki mine	d_{calc}			0, c=8.91 Å, tudy enhanced by a
Nishin	I d _{obs}			C $2/c$? a = 9.94, b = 9.4 $\beta = 102^{\circ}$ This s
Nishinomaki mine synthetic a-AsS	I d		114	$\begin{array}{cccccc} \text{JCPDS 25-57} & \text{J} \\ \text{JCPDS 25-57} & \text{J} \\ \text{C22}, & \text{C22}, & \text{C21}, & \text{C21}$

(continued).	
ä	
Table	

10 μm 15kV X1.500

Fig. 3. The Back-scattered Electron Image of a supposed alacranite fragment.

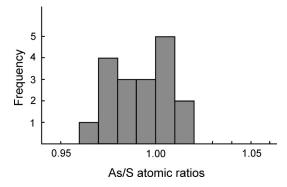


Fig. 4. The frequency of As/S ratio of 18 chemical analyses for As_4S_4 -minerals.

Table 3. Chemical cor	nposition for As ₄ S ₄	1.
-----------------------	--	----

	Wt.%	Atom %
As S	69.60 29.87	49.93 50.07
Total	99.47	

patterns three assemblages, 1) pararealgar, 2) pararealgar+realgar, and 3) pararelagar+ alacranite were recognized (Fig. 2). Although the powder X-ray diffraction pattern of the present pararealgar resemble that of pararealgar from Mount Washington copper deposit (Roberts *et al.*, 1980) (Table 1), the alacranite studied here differs in the diffraction pattern from the original one from Uzon Caldera, Kamchatka (Popova *et* *al.*, 1986). The d-spacing in X-ray diffraction pattern of alacranite from Japan is similar to that of the synthetic α -AsS (Roland, 1972) or the calculated d-spacing based on the unit cell parameters determined by Burns and Percival (2001) who solved the crystal structure of alacranite collected from the seafloor around Lihir Island, Papua New Guinea (Table 2). The unit cell parameters of the present pararealgar and alacranite are: a=9.925(2), b=9.695(2), c=8.504(2) Å, $\beta=97.1(1)^{\circ}$, and a=9.941(2), b=9.398(2), c=8.910(2) Å, $\beta=102.0(1)^{\circ}$, respectively.

Chemical Composition

Chemical analyses were made using Link Systems energy dispersive X-ray spectrometer (QX-2000) for the specimen of pararelagar+alacranite mixture. In this specimen we analyzed cleavable fragments to be considered as alacranite (Fig. 3). The detected elements are only As and S, and As/S ratio is from 0.97 to 1.02 for eighteen analyses (Fig. 4). The average of the ratio is 0.996. However, the figure is not valid for the chemical composition of alacranite due to the lack of fully characterization. The closest analysis to the average is demonstarated in Table 3.

Consideration on Geneses

According to the experimental result by Roland (1972), α -AsS now corresponding to alacranite inverts to realgar under about 240°C. Namely, he proposed that α -AsS is a high-temperature phase. On the other hand, Migdistov and Bychkov (1998) have reported that alacranite forms at the temperature between 50 and 75°C at Uzon caldera, Kamchatka. In the case of the present specimen, it is considered that the alacranite was formed under low temperature, because of its typical appearance indicating secondary formation. The phase relation between pararealgar and alacranite has been unknown, but it is probable that the both minerals were formed from realgar under the moderate condition such as the exposing by sunlight around room temperature.

The association of alacranite and realgar has been confirmed experimentally (e.g. Roland, 1972), and described as natural occurrences at Uzon caldera (Migdistov and Bychkov, 1998) and at the seafloor around Lihir Island (Burns and Percival, 2001). The present assemblage with alacranite and pararealgar is the second example after the first report from Mina Alacrán by Clark (1970). Therefore, we consider that realgar inverts easily into other two As_4S_4 polymorphs through exposing by sunlight under the moderate conditions as follows; realgar→alacranite→ pararealgar.

References

- Bonazzi, P., S. Menchetti & G. Pratesi, 1995. The crystal structure of pararealgar, As₄S₄. Amer. Mineral., 80, 400–403.
- Burns, P. C. & J. B. Percival, 2001. Alacranite, As₄S₄: a new occurrence, new formula, and determination of the crystal structure. *Can. Mineral.*, **39**, 809–818.
- Clark, A. H., 1970. Alpha-arsenic sulfide, from Mina Alacrán, Panpa Larga, Chile. *Amer. Mineral.*, 55, 1338– 1344.
- Hall, H. T., 1966. The systems Ag–Sb–S, Ag–As–S, and Ag–Bi–S: phase relations and mineralogical significance. *Unpubl. doctoral thesis, Brown University*, 172 pp. in Roland (1972).
- Kato, A., K. Sakurai & K. Osumi, 1970. New Minerals reported from Japan. 92–93 in Introduction to Japanese Minerals, 208 pp. Geological Survey of Japan.
- Migdisov, A. A. & A. Y. Bychkov, 1998. The behaviour of metals and sulphur during the formation of hydrothermal mercury–antimony–arsenic mineralization, Uzon caldera, Kamchatka, Russia. J. Volcan. Geotherm. Res., 84, 153–171.
- Popova, V. I., V. A. Popov, A. Clark, V. O. Polyakov & S. E. Borisovskii, 1986. Alacranite As₈S₉—a new mineral. *Zapiski Vses. Mineralog. Obshch.*, **115**, 360–368 (in Russian).
- Roberts, A. C., H. G. Ansell & M. Bonardi, 1980. Pararealgar. a new polymorph of AsS, from British Columbia. *Can. Mineral.*, 18, 525–527.
- Roland, G. W., 1972. Concerning the α-AsS ≥ realgar inversion. *Can. Mineral.*, **11**, 520–525.
- Strunz, H. & E. H. Nickel, 2001. Strunz mineralogical tables. E. Schwelzerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart.