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Abstract The sect. Heterotropa of the genus Asarum (Aristolochiaceae) comprises 49 endemic
species in Japan. Species of Heterotropa are predominantly outcrossing and exhibit remarkable
diversity in floral traits. This suggests that pollinator interactions may play critical roles in their
diversification. A previous study found that A. famaense did not produce seeds via autonomous
self-pollination and was primarily pollinated by female individuals of a fungus gnat (Cordyla sp.;
family Mycetophilidae) without providing any reward. Because the pollinator oviposits inside the
calyx tube when visiting the flower, and the fungus gnat genus Cordyla is known to use mush-
rooms as brood sites, it has been hypothesized that the plant species adopts a mushroom mimicry
system for pollination. Here, we revisited the floral biology of 4. famaense and investigated the
hypothesized mushroom-mimicry system using time-lapse photography, pollinator identification
via DNA barcoding, pollination experiments, and floral scent analyses. We confirmed that 4.
tamaense seldom sets fruit by autonomous self-pollination and that Cordyla sp. are likely the prin-
cipal pollinators, as determined by DNA barcoding of adult insects that visited the flowers and
eggs laid within the calyx tube. Cordyla sp. and other potentially pollinating dipteran species typi-
cally visited flowers from daytime to dusk. The major floral volatile compounds of A. tamaense
were dimethyl disulfide that is a well-known major component of carrion scent, 2,3-butanediol
diacetate, 2,3-butanediol, and several esters that are typical components of fermenting fruit scents.
Although these volatile compounds are not typical in mushroom-mimicking flowers, it is possible
that they are involved in attracting pollinators.

Key words: Asarum tamaense, brood-site mimicry, dimethyl disulfide, floral volatile, fungus
gnats, mitochondrial COI, mushroom mimicry, pollination.

Introduction six sections, sect. Heterotropa, characterized by

Asarum (Aristolochiaceae) is a genus of peren-
nial herbs comprising 128 species distributed
throughout the temperate region of the Northern
Hemisphere. Recent studies have recognized six
sections in the genus based on morphological,
cytological, and phylogenetic evidence (Sinn ef
al., 2015a; Okuyama et al., 2020). Among these
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base chromosome number x=12 (Sugawara
1981, 1987; Zhou, 1998), contains the largest
number of species, i.e., 62 (Okuyama et al,
2020). All species of Heterotropa, excluding two
that are native to mainland China, are distributed
in Japan and Taiwan; 49 species are endemic to
the Japanese Archipelago (Okuyama et al.,
2020). Heterotropa species are predominantly
outcrossing (Sinn et al., 2015b; Matsuda et al.,
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2017), and their floral traits, including size,
shape, color, and scent, are highly diversified
(Azuma et al., 2010; Kakishima and Okuyama,
2018a), suggesting that pollinator interactions
play a critical role in their diversification. More-
over, their pollination systems are considered to
be a typical brood-site mimicry system wherein
flowers provide no reward to their pollinators
(Sugawara, 1988). The reported pollinators of
several species of Asarum are mycophagous dip-
terans such as fungus gnats (Sugawara, 1988;
Mesler and Lu, 1993). Accordingly, it has been
hypothesized that Asarum has a mushroom-mim-
icry pollination system because pollinators have
been known to oviposit in the flowers, which
somewhat resemble mushrooms (Sinn et al,
2015b).

Asarum tamaense Makino is endemic to Japan
and is distributed in the western half of the Kanto
district, specifically the Tokyo, Kanagawa, and
Saitama Prefectures (Sugawara, 2006). A.
tamaense is listed in both the National (vulnera-
ble) and Prefectural Red Lists (vulnerable to crit-
ically endangered) (Kanagawa Prefecture, 2006;
Saitama Prefecture, 2011; Tokyo Prefecture,
2013; Ministry of the Environment, Japan,
2020). To date, A. tamaense is the only Het-
erotropa species whose pollination biology has
been documented in detail (Sugawara, 1988).
Sugawara (1988) reported that the species did
not produce seeds via autonomous self-pollina-
tion and was primarily pollinated by female
Cordyla sp. (Mycetophilidae); these gnats visited
the flowers, laid eggs inside the calyx tubes, and
were observed carrying pollen grains on their
dorsal thorax following flower visitation. Thus,
these gnats should contribute to the pollination of
A. tamaense.

As part of our ongoing study linking the
remarkable diversity of floral traits within Hetz-
erotropa to pollinator diversity, we revisited the
floral biology of A. tamaense to more deeply
investigate the hypothesized brood-site mimicry
system. To this end, we monitored the timing and
frequency of insect visitations to A. famaense
flowers using time-lapse photography. We exam-

ined the diversity of flower-visiting insects using
DNA barcoding of both visitors and their depos-
ited eggs. Finally, we analyzed the composition
of floral volatile compounds using gas chroma-
tography/mass spectrometry (GC/MS) to charac-
terize the potential chemical components of the
pollination system.

Materials and Methods

Time-lapse photography and specimen collection

This study was conducted on the Hachioji
campus of the Tokyo University of Pharmacy
and Life Sciences (N35°38', E139°22'), Tokyo
Prefecture, Japan. To monitor the insects visiting
the flowers of A. tamaense (flower visitors), we
employed time-lapse photography using WG-4
or WG-50 cameras (Ricoh, Tokyo, Japan).
Eleven and ten flowering individuals were moni-
tored during 4-5 April and 11-13 April 2018,
respectively (Table 1). The cameras were set up
at a minimum distance of 5 cm in front of the tar-
get flowers and the time-interval between photos
was set to 2min. We discarded photos in which
more than half of the flower was obscured by
overlapping leaves. An animal individual touch-
ing the upper surface of the calyx or remaining
inside the calyx was counted as a single visit, and
subsequent photos of the same animal on the
same flower were not counted. To characterize
temporal patterns of insect visitation, we com-
pared the number of flower visitors observed at
dawn (from one hour before sunrise to one hour
after sunrise), daytime (from one hour after sun-
rise to one hour before sunset), dusk (from one
hour before sunset to one hour after sunset), and
overnight (from one hour after sunset to one hour
before sunrise).

Flower visitors were collected on 12 and 13
April 2018. Once an animal entered the calyx,
we collected it using an insect aspirator. Col-
lected animals were stored dry to inspect pollen
on their bodies or in 99.5% ethanol for identifica-
tion using morphology and DNA barcoding, as
described below. To collect insect eggs laid
inside the calyx tubes, we sampled 26 flowers on
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Table 1. The detailed information of the time-lapse photography
Plant ID N;mber of Date Time Number of Note
owers photos
1 1 4-5 Apr. 2017 11:19-12:33 679 Exclude obscured pictures
2 2 4-5 Apr. 2017 11:31-13:29 782
3 1 4-5 Apr. 2017 11:49-13:37 777
4 2 4-5 Apr. 2017 11:42-13:48 329 Exclude obscured pictures
5 1 4-5 Apr. 2017 11:28-13:30 132 Exclude obscured pictures
6 3 4-5 Apr. 2017 11:20-13:26 787
7 2 4-5 Apr. 2017 11:26-13:36 571 Exclude obscured pictures
8 1 4-5 Apr. 2017 11:44-13:44 784
9 2 4-5 Apr. 2017 11:46-13:48 785
10 2 4-5 Apr. 2017 11:50-14:00 789
11 4 4-5 Apr. 2017 11:59-13:56 778
12 6 11-12 Apr. 2017 11:31-12:55 714 Exclude obscured pictures
12-13 Apr. 2017 13:36-12:23 685
13 3 11-12 Apr. 2017 11:49-13:49 781
12-13 Apr. 2017 13:54-12:21 395 Exclude obscured pictures
14 2 11-12 Apr. 2017 11:49-13:41 777
12-13 Apr. 2017 13:49-12:37 685
15 1 11-12 Apr. 2017 11:42-13:32 775
12-13 Apr. 2017 13:40-12:34 688
16 2 11-12 Apr. 2017 11:59-13:43 773
12-13 Apr. 2017 13:47-12:39 687
17 2 11-12 Apr. 2017 12:08-13:52 772
12-13 Apr. 2017 13:57-12:43 684
18 4 11-12 Apr. 2017 12:11-13:53 678 Exclude obscured pictures
12-13 Apr. 2017 13:59-12:43 683
19 5 11-12 Apr. 2017 12:20-13:58 769
12-13 Apr. 2017 14:04-12:43 457 Exclude obscured pictures
20 5 11-12 Apr. 2017 12:25-14:03 676 Exclude obscured pictures
12-13 Apr. 2017 14:08-12:44 479 Exclude obscured pictures
21 4 11-12 Apr. 2017 12:26-13:56 765
12-13 Apr. 2017 14:06-12:41 677
Total 20793

13 April 2018. We counted the number of eggs
using a microscope and identified the eggs using
DNA barcoding.

Identification of floral visitors by DNA barcoding

DNA barcoding was based on sequences of
mitochondrial cytochrome oxidase subunit I
using the primers LCO1490 and HCO2198 (Fol-
mer et al., 1994). DNA extraction and sequenc-
ing were performed as reported in Kakishima
and Okuyama (2018b) and Kakishima et al
(2020). New nucleotide sequences obtained in
this study were deposited in the DNA Data Bank
of Japan under accession numbers LC550539—
LC550565. Species identification of collected
floral visitors was based on nucleotide sequences
and obtained using the Barcode of Life Data Sys-
tem (Ratnasingham and Hebert, 2007). We

adopted a 4% uncorrected genetic distance as the
threshold for differentiating species using DNA
barcoding (Okuyama et al., 2018). A phyloge-
netic analysis was conducted using RAXML ver-
sion 8 (Stamatakis, 2014) using a maximum like-
lihood (ML) method with a GTR + G likelihood
model for nucleotide substitutions. The ML tree
and bootstrap branch supports were obtained by
running a rapid bootstrapping algorithm with
1,000 replicates followed by a search for the ML
tree.

Bagging experiments

To examine the effect of insect pollination in a
natural population of A. tamaense, we conducted
flower-bagging experiments from 5 April 2018 to
22 May 2018. We arbitrarily selected 22 flower
buds that were expected to bloom in the days fol-
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lowing selection to assess autonomous self-polli-
nation in A. tamaense. We covered these flower
buds with unwoven polyester fabric bags to pre-
vent insect pollination (i.e., bagging treatments).
We then arbitrarily selected and labeled 21 flow-
ers and monitored these as open-pollination con-
trols (i.e., open treatments). The fruit and seed
set of all selected flowers were determined on 22
May 2018, 39-47 days after the bags were
placed.

Volatile compound analyses

Floral scents of A. tamaense were examined
using five samples from three individuals. The
floral scents of the three individuals were first
examined during daytime. One individual (plant
ID: TBG160651) was sampled again in a differ-
ent years and another individual (SK18097) was
sampled again during the night. The scents from
a cut leaf of one individual (TBG165603) were
also assessed to identify the volatile compounds
that were unique to flowers. For sampling, 1-2
flowers (0—7 days after opening) or one leaf was
collected and placed in a 50- or 100-mL glass
vial sealed with aluminum foil. Volatile com-
pounds were collected for 30min using head-
space-solid phase microextraction (SPME) with
100-um fibers of divinylbenzene/carboxen/
polydimethylsiloxane (Supelco, Bellfonte, PA,
USA). Some of the data, including the relative
abundance of the individual compounds within a
sample, will have been influenced by various fac-
tors that affect the sensitivity and selectivity of
the small surface area of the SPME fiber and,
therefore may not always represent the exact
compositions of volatile compounds in the sam-
ple. Nevertheless, the data on volatile compound
composition data obtained by SPME under the
standardized sampling conditions were highly
repeatable and consistent with those obtained by
absorbent-based trapping methods in terms of
both quality and quantity (e.g., Friberg et al.,
2013). To distinguish the volatile compounds of
flowers from those of the ambient air, volatiles
from an empty vial were used as a control.

All samples were subjected to GC/MS with

settings equivalent to those reported in Okamoto
et al. (2015) and Kakishima and Okuyama
(2018a). We used a GCMS-QP2010SE system
(Shimadzu, Kyoto, Japan) equipped with an Rtx-
SSiIMS capillary column (30m X 0.25mm; film
thickness, 250 um; Restek, Bellefonte, PA, USA).
Helium was used as the carrier gas at a velocity
of 48.1cm s~ !, and the injector temperature was
250°C. The injector was operated in splitless
mode for 1 min. Electron ionization mass spectra
were obtained at a source temperature of 200°C.
The oven temperature was programmed to the
following sequence: 40°C for 5min, an increase
of 5°C/min to 210°C, an increase of 10°C/min to
280°C, and holding at 280°C for 5 min. The rela-
tive peak area in the total ion chromatogram
(TIC) was used as a rough estimate of the rela-
tive content of each compound in each sample.

For all volatile compounds, retention indices
were calculated with n-alkane (C6—C20) stan-
dards (Wako, Tokyo, Japan). Tentative identifica-
tion was made by comparing the mass spectra
with those in the libraries (NIST14 and NIST14s,
National Institute of Standards and Technology,
USA) using a cutoff of 94% similarity. The mass
spectra, as well as the retention indices for the
compounds, were compared with authentic stan-
dards. When authentic standards could not be
obtained, the retention indices were compared
with those reported in the National Institute of
Standards and Technology Chemistry WebBook
(Linstrom and Mallard, 2012).

Results

Floral visitors of Asarum tamaense

We took a total of 20,793 photographs of A.
tamaense flowers (Table 1). We detected 0-36
flower visitors to each A. tamaense individual
and a total of 228 flower visitors across the mon-
itoring period (Table 2). We collected 1,680,
9,818, 1,800, and 7,495 photographs at dawn,
daytime, dusk, and overnight, respectively (Table
3). The time-lapse photography allowed us to
detect multiple photos of three individuals of
Cordyla sp. bearing a large number of pollen
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Table 3. The number of flower visitors per 100 hours (3,000 photographs)
Category of visitor Morning Daytime Dusk Night
Coleoptera (beetles) 3.6 1.8 33 32
Diptera Cecidomyiidae 0 0.3 0 0
Drosophilidae 0 2.1 0 0
Mycetophilidae 0 1.2 33 0
Sciaridae 0 6.1 5.0 32
Tipulidae 0 0.6 0 0
Unidentified Nematocera 1.8 1.2 33 0.4
Unidentified Brachycera 0 0.9 0 0
Unidentified Diptera 1.8 2.4 1.7 1.6
Hemiptera Aphidoidea (aphids) 0 0.3 0 0
Hymenoptera Formicidae (ants) 12.5 13.4 233 16.0
Unidentified Hymenoptera 0 0.6 1.7 0
Unidentified insects 0 0.3 0 0
Amphipoda 1.8 0 1.7 0.4
Collembola 3.6 0.6 33 2.4
Isopoda 1.8 0 0 1.6
Myriapoda (millipedes and centipedes) 1.8 0 1.7 24
Total 28.6 32.1 48.3 31.2
Nuber of photos 1680 9818 1800 7495

grains on their bodies (Fig. 1A). We did not rec-
ognize pollen grains on the bodies of other dip-
terans such as Cecidomyiidae, Drosophilidae, or
Sciaridae in any photos (Fig. 1B-D). All six col-
lected individuals of Cordyla sp. that were stored
dry had a large number of pollen grains (>20)
on their bodies (Fig. 1G, H), but we also found
about ten pollen grains on the dried body of one
Scaptomyza sp. (Drosophilidae) individual col-
lected from an A. tamaense flower (Fig. 1I).
Although ants were the most frequently observed
animal in the photographs (Table 2), there was no
evidence that they entered the calyx tubes or
transported pollen grains on their body. There
was no clear temporal pattern of flower visitation
by ants. By contrast, Amphipoda, Coleoptera
(beetles), Collembola, and Myriapoda (milli-
pedes and centipedes) primarily visited flowers
from dusk to dawn. Dipterans (Drosophilidae,
Mycetophilidae, Sciaridae, and others) primarily
visited flowers from daytime to dusk.

We collected 18 dipteran flower visitors from
A. tamaense flowers. Six individuals of Cordyla
sp., which has been reported as a principal polli-
nator of A. tamaense (Sugawara, 1988), seven
individuals of Cecidomyiidae, one Drosophili-
dae, three Sciaridae, and one Tipulidae were col-
lected (Table 4). For Cordyla sp., five females

and one male were collected (Fig. 1G, H). Six-
teen of the 18 collected individuals were success-
fully sequenced by DNA barcoding (Fig. 2).
Based on our DNA barcoding criterion, speci-
mens of Cordyla sp. and Cecidomyiidaec were
indicated as including only one species each. The
three Sciaridae individuals were recognized as
three different species. The single Drosophilidae
individual was identified as Scaptomyza sp. (Fig.
10).

We found 18 eggs inside the calyx tubes of six
of the 26 collected flowers. Twelve eggs were
successfully sequenced by DNA barcoding; all
were identified as dipterans, of which nine were
Cordyla sp. and three were Drosophila sp. (Dro-
sophilidae) (Table 4; Fig. 1E, F). The Cordyla sp.
was indicated to be the same species that was
collected from flower visitor samples. All three
Drosophila sp. eggs were collected from a single
calyx tube (Fig. 1F).

Bagging experiments

Only one of the 22 bagged flowers produced
fruit (5% fruit set), whereas five fruits were pro-
duced from the 21 control (open treatment) flow-
ers (24% fruit set). Although the difference
between the two treatments was not significant
(Fisher's exact test, one-sided, P =0.08), the fruit
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Fig. 1.

set in the open-pollination treatment was slightly
higher than the bagging treatment. Thus, it
remains possible that pollinator-mediated out-
crossing facilitates fruit set of A. tamaense. The
number of seeds per fruit was 16 and 23 in the
bagged and open treatments, respectively.

Floral volatile compounds in Asarum tamaense
Overall, 86 floral volatile compounds were
found in 4. tamaense. We detected 35-48 vola-

Images of floral visitors and eggs laid on the inner surfaces of the calyx tubes. A: Cordyla sp. (Mycetophi-
lidae) heavily coated with pollen grains departing from a calyx tube. B: Drosophilidae sp. C: Sciaridae sp. D:
Cecidomyiidae sp. E: An egg of Cordyla sp. F: Eggs of Drosophila sp. (Drosophilidae). G: A female Cordyla
sp. H: A male Cordyla sp. I: Scaptomyza sp. (Drosophilidae). Scales=1 mm.

tile compounds in each individual headspace
sample (Table 6). These compounds consisted of
29 aliphatics, two benzenoids and phenylpro-
panoids, 18 monoterpenoids, 33 sesquiterpe-
noids, two diterpenes, and two sulfur-containing
compounds. The volatile compounds common
among all flower samples were isopropyl acetate,
2,3-butanediol isomer, 2,3-butanediol diacetate
camphene,  f-pinene,
a-phellandrene, cymene isomer, one unidentified

isomer,  a-pinene,
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Table 4. The number of collected adult insects and eggs

Cecidomyiidae ~ Drosophilidae ~ Mycetophilidae Sciaridae Tipulidae Total
Adult 7 1 6 3 1 18
Egg 9 3 0 0 0 12

Table 5. Fruit set and seeds per fruit in the pollination experiments
Treatment Individuals Flowers Fruit set Fruiting rate Seeds per fruit
Open 16 21 5 0.24 16.0
Bagging 22 22 1 0.05 23.0
l ATMOO1 (AD) 7
100 [ ATMo005 (AD)
ATM007 (AD) Cecidomyiidae sp. | Cecidomyiidae
68 ATMO08 (AD)
| ATMO09 (AD) i
ATMoo04 (AD) | Bradysia sp. 1 ]
T|7—|: ATMo18 (AD) | Bradysia sp. 2 Sciaridae
81 ATMo03 (AD) | Bradysia gibbosa _
HC006 (EG) n
100 [Hco02 EG)
HC008 (EG)
HCO13(EG)
ATMO11 (AD)
ATMO14 (AD)
ATM017(AD) | Cordyla sp. Mycetophilidae
ATMO19 (AD)
ATMO020 (AD)
HC003 (EG)
68 HCO009 (EG)
HCO14 (EG)
HC016 (EG)
HC017 (EG) -
100 | HC004 EG) 7]
HC005 (EG) Drosophila sp. -
91 HC007 (EG) | Drosophilidae
7 ATMO15 (AD) | Scaptomyza sp. -
ATMo10 (AD) | Tipuloidea sp. | Tipuloidea
0.06

Fig. 2. A maximum likelihood phylogenetic tree of 28 dipteran individuals based on 617-base pairs (bp) of mito-
chondrial cytochrome oxidase subunit I (COI). Bootstrap supports are shown for nodes above the species
level. Each operational taxonomic unit (OTU) label represents the sample name, followed by the sample type:

adult (AD) or egg (EG).

monoterpene, humulene, four unidentified ses-
quiterpenes, and dimethyl disulfide. Among
these, a-pinene, camphene, f-pinene, cymene
isomer, one unidentified monoterpene, humulene,
and one unidentified sesquiterpene were also
detected in the leaf sample. The volatile compo-
sition, represented by the TIC peak area ratios,
was variable among flower samples and was
dominated by one sulfur-containing compound,

dimethyl disulfide (15.77-53.03%), and three ali-
phatics, namely, 2,4,5-trimethyl-1,3-dioxolane
isomer (0.00-15.14%), 2,3-butanediol isomer
(1.93-9.05%), and 2,3-butanediol diacetate iso-
mer (0.37-30.43%).

Discussion

Our bagging experiments, although not statis-
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tically significant, suggested that A. tamaense
seldom sets fruit by autonomous self-pollination
(Sugawara, 1988). Our pollinator observations
provided further evidence that Cordyla sp. is the
principal pollinator of 4. tamaense, as has been
previously reported (Sugawara, 1988). DNA bar-
coding indicated that a single Cordyla species
was collected as both eggs and adults (Fig. 2)
from A. tamaense flowers, suggesting that this
dipteran plays an important role in the pollina-
tion of this species. We collected one male
Cordyla sp. of the six specimens collected.
Although only female individuals were reported
as flower visitors previously (Sugawara, 1988),
this result implies that both male and female
individuals of Cordyla sp. can be pollinators of
A. tamaense, while the visitation frequency is
female-biased. Female-biased visitation and the
presence of eggs inside the calyx tubes also sug-
gests that the flowers of A. tamaense mimic the
brood-site of this pollinator, i.e., mushrooms
(Sugawara, 1988; Sinn et al., 2015b), because
Cordyla species are known to utilize mushrooms,
especially ground-inhabiting fungi such as Rus-
sula and Lactarius, as their larval food source
(Stone et al., 1965; Hackman and Meinander,
1979; Jakovlev, 2012). Although Sugawara
(1988) did not report any other dipteran visitors
of A. tamaense, we observed visitation by mem-
bers of Cecidomyiidae, Drosophilidae, Sciaridae,
and Tipulidae, both with time-lapse photography
and direct observation. Furthermore, we
observed pollen grains on the body of a collected
Scaptomyza sp., which indicates that dipterans
other than Cordyla sp. may play some role in the
pollination of A. tamaense. Although further
observation would be necessary to reach a clear
conclusion, we suggest that other flower visitors,
including ants, coleopterans, collembolans, and
isopods, are unlikely to function as effective pol-
linators of A.
observed these groups transporting pollen.

Most dipterans, including Cordyla sp., visited
flowers during daytime and dusk. Therefore, it is
likely that pollination of A. tamaense occurs
mainly from daytime until dusk. This is likely a

tamaense because we never

result of the behavioral circadian rhythms of the
pollinators, because the floral scents of A.
tamaense were not found to differ between day
and night. Our previous field observations of A.
costatum on Shikoku Island and A. minamitania-
num on Kyushu Island found that flowers were
mainly visited by flightless animals (Kakishima
and Okuyama, 2018a). The difference in flower
visitors between 4. tamaense and these two Asa-
rum species may be the result of strikingly differ-
ent floral scent compositions between these spe-
cies, as discussed below, although differences in
climate or geographical distribution may also be
important factors.

We consider it plausible that 4. tamaense uses
mushroom-mimicry to attract pollinators (Suga-
wara, 1988; Sinn et al., 2015b). However, our
analyses also indicated that 4. famaense does not
emit C8 aliphatics such as l-octen-3-ol, 3-octa-
nol, and 3-octanone, which are the typical vola-
tile components of mushrooms or so-called
mushroom-mimicking flowers (Jiirgens et al.,
2013; Policha et al., 2016; Kakishima et al.,
2019). Instead, the most abundant floral volatile
compound of A. tamaense was dimethyl disul-
fide, accounting for, on average, 42.1% of the
relative floral volatile compounds, which is the
typical scent component of carrion or carrion-
mimicking flowers (Johnson and Jiirgens, 2010;
Jirgens et al., 2013). This compound has never
been reported from the flowers of sect. Het-
erotropa (Azuma et al. 2010; Kakishima and
Okuyama, 2018a). Dimethyl oligosulfides,
including dimethyl disulfide, are characteristic
volatile components of truffie (7uber spp.) and
shiitake (Lentinus edodes) mushrooms, as well as
some species bearing mushroom-mimicking
flowers, such as Duguetia cadaverica (Annona-
ceae) (Pelusio ef al., 1995; Yang et al., 1998; Tei-
chert et al., 2012). Therefore, although the flow-
ers of A. tamaense do not appear to have volatile
profiles typical of mushroom-mimicking flowers,
they may mimic ground-growing mushrooms by
emitting dimethyl disulfide. Because the emis-
sion of dimethyl disulfide by shiitake mushrooms
is known to increase upon drying (Yang ef al.,
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1998), it is also possible that A. tamaense might
mimic degraded mushrooms under wet and dry
cycles that are typical in natural settings.
Because the known hosts of the fungus gnat
genus Cordyla are mostly confined to Russua-
ceae and Boletaceae (Sasakawa and Ishizaki,
2003, Jacovlev, 2012), it would be worth investi-
gating whether these mushroom species emit
dimethyl disulfide.

We also detected 2,3-butanediol diacetate
(mean composition: 12.41%), 2,3-butanediol
(6.06%), and other esters such as isobutyl acetate
and isoamyl acetate from the flowers of A4.
tamaense. These compounds are characteristic of
the volatile blends of fermenting fruits (Proches
and Johnson, 2009; Goodrich and Jiirgens, 2018).
We further detected 2,4,5-trimethyl-1,3-dioxo-
lane (7.26%), which is characteristic of fer-
mented fruit juice (Giinther et al., 2019). Some
of these compounds are also known as floral
scent components of certain Gastrodia (Orchida-
ceae), Arum (Araceae), and Asimina (Annona-
ceae) species, whose pollination systems are con-
sidered to be based on fermenting-fruit mimicry
(Goodrich and Raguso, 2009; Stokl et al., 2010;
Martos et al., 2015). Beetles or drosophilids are
the typical pollinators of these species (Goodrich
and Jirgens, 2018). Accordingly, these volatile
compounds may also play some role in luring
pollinators to A. tamaense, and thus this species
may be adopting some traits of fermenting-fruit
mimicry as well as mushroom-mimicry.

The floral volatile compounds of A. tamaense
are strikingly different from those of the four
taxa of Asarum Series Sakawanum in sect. Het-
erotropa (Kakishima and Okuyama, 2018a). The
main components of the floral scent of A.
tamaense, i.e., dimethyl disulfide, 2,3-butanediol
diacetate, 2,3-butanediol, 2,4,5-trimethyl-1,3-di-
oxolane, isobutyl acetate, and isoamyl acetate,
are not found in other species of Asarum Series
Sakawanum. In addition, the principle compo-
nent of the floral scents of species of Asarum
Series Sakawanum, methyl angelate, was not
detected in 4. tamaense. However, many terpe-
noids found in this study are common to Asarum

Series Sakawanum. We note that some of these
terpenoids were also detected in the cut leaves,
indicating that these compounds are not unique
to the flowers. Nevertheless, because terpenoids
are generally considered to be important in deter-
mining the specificity of pollinator attraction
(Okamoto et al., 2015; Pichersky and Raguso,
2018), careful inspection is needed to determine
their function in the pollination systems of sect.
Heterotropa.

Floral scent profiles are highly variable within
sect. Heterotropa (Azuma et al., 2010; Kak-
ishima and Okuyama, 2018a); our study has pro-
vided yet another distinct example. It is thus
becoming evident that the floral scent profiles of
sect. Heterotropa species are remarkably diverse,
as are other floral traits within this genus. Further
study is required to comprehend the full scope of
the relationships between pollinator diversity and
floral traits, including scent profiles, within this
genus, and to clarify if pollinators have played a
central role in the radiation of sect. Heterotropa
in the Japanese archipelago.
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