First record of genuine *Codium mamillosum* Harvey (Codiaceae, Ulvophyceae) from Japan

Taiju Kitayama
Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan
E-mail: kitayama@kahaku.go.jp

(Received 29 August 2017; accepted 27 September 2017)

Abstract A marine benthic green alga, *Codium mamillosum* Harvey (Codiaceae, Bryopsidales, Ulvophyceae) was collected from the mesophotic zone off Chichi-jima Island, Ogasawara Islands, Japan. In Japan, at the end of the 19th century, this species name was used by Okamura (in Matsumura and Miyoshi, 1899) for his specimens of solid globular *Codium* collected from main islands of Japan, afterward it was synonymized by Silva (1962) into *Codium minus* (O.C. Schmidt) P.C.Silva as “*Codium mamillosum* sensu Okamura”. The present alga collected recently from Ogasawara Islands was identified as a genuine *C. mamillosum* because the thalli have relatively larger utricles (550–1100 µm in diameter) than those of *C. minus*.

Key words: Codiaceae, *Codium mamillosum*, Japan, marine benthic green alga, Ogasawara Islands, Ulvophyceae.

In the end of the 18th century, the marine green algal genus *Codium* (Codiaceae, Bryopsidales, Ulvophyceae) was established by Stackhouse (1795). This genus has 120–144 species (Huisman, 2015; Guiry and Guiry, 2017), which are extremely various in external morphology: flattened to erect, dorsiventral or isobilateral, branched or unbranched, complanate to terete, membranous to globular, etc. In particular, most of globular species of *Codium* are also remarkably different from other species in having larger utricles (inflated terminal portions of non-septate filament in the cortex of coenocytic algae). At present, more than ten species are known as globular *Codium* in the world: *Codium bursa* (Olivi) C.Agardh, *C. elisabethiae* O.C.Schmidt, *C. globosum* A.H.S.Lucas, *C. mamillosum* Harvey, *C. megalophyllum* P.C.Silva, *C. minus* (O.C.Schmidt) P.C.Silva, *C. ovale* Zanardini, *C. papenfussii* P.C.Silva, *C. pomeoides* J.Agardh, *C. saccatum* Okamura, *C. spongiosum* Harvey.

Codium mamillosum Harvey was described by Harvey (1855) based on the specimens collected from Western Australia, whose appearance was described as “a very solid, green, mamillated (having nipples) ball”. In Japan, Okamura in Matsumura and Miyoshi (1899) and Okamura (1915) identified the specimens of solid globular *Codium* collected from main islands of Japan as *C. mamillosum*. Afterward, however, this species was divided by Schmidt (1923) into three varieties: *C. mamillosum* var. *typicum*, var. *capens* and var. *minus*, and then Okamura (1936) used “*Codium mamillosum* var. *minus*”. At present, the two varieties, var. *capens* and *minus* are treated by Silva (1959; 1962) as a heterotypic synonym of *C. megalophyllum* P.C.Silva and the basionym *C. minus* (O.C.Schmidt) P.C.Silva respectively. In the latest version of “Checklist of Marine Algae of Japan (Revised in 2015)”, this species was listed as “*Codium minus* (Schmidt) Silva [*Codium mamillosum* var. *minus*] [*Codium mamillosum* sensu Okamura]” (Yoshida et al., 2015).
Taiju Kitayama

Ogasawara Islands (= Bonin Islands) are oceanic islands located ca. 1,000 km south of Izu Peninsula. In the investigations of algal flora around the Islands, several rare algae were found from the mesophotic zone or middle light zone (30–150 m in depth) using a dredge: for example, mesophotic marine alga, Aneurianna ogasawaraensis Kitayama (Kitayama, 2014), Discosporangia mesarthrocarpum (Meneghini) Hauck (Kitayama, 2012), Zosterocarpus ogasawaraensis Kitayama (Kitayama, 2013). There is a possibility of that the Ogasawara Islands have a unique algal flora different from any area of the Japanese Archipelago. In this study, to confirm the identity of the present alga from the Islands and the reconsideration on the distribution of Codium mamillosum Harvey in Japan, the author made anatomical observations on the material using a microscope.

Material and Methods

The green algal material referable to Codium mamillosum Harvey was collected from the mesophotic zone (30–150 m in depth) of Chichijima Island in the Ogasawara archipelago (= Bonin Islands), Japan by a dredge using the fishing vessel “The 7th Ushiwo-maru” (steering by Captain Y. Takase), on 16 and 17 July 2017. For preservation, the material was fixed in 10% Formalin-seawater. Specimens were mounted in glycerine jelly after staining by 1% aniline blue solution. Anatomical observations were made on the material using a microscope. Voucher specimens were deposited in the algal herbarium of the National Museum of Nature and Science (TNS).

Results

Class Ulvophyceae K.R. Mattox et K.D. Stewart, 1984
Order Bryopsidales J.H. Schaffner, 1922
Family Codiaceae Kützing, 1843

Codium mamillosum Harvey

Fig. 1. Codium mamillosum Harvey from Chichijima Island, Ogasawara Islands, Japan. Habit (TNS-AL 209135).
Codium mamillosum new to Japan

Figs. 2–10. *Codium mamillosum* Harvey from Chichijima Island, Ogasawara Islands, Japan. 2–8. Various stages of utricles showing medullary filaments (m) and rhizoidal filaments (r). 9. Basal portion of a utricle showing a plug (p). 10. Rhizoidal filament with a hapteron (h).
Taiju Kitayama

[Figs. 1–10]

Synonym: *Lamarckia mamillosa* (Harvey) Kuntze, 1891.

Codium bursa var. *australe* Sonder, 1853.

Codium mamillosum var. *typicum* O.C. Schmidt, 1923.

Habitat: Grew on rock in the mesophotic zone (41–54 m in depth).

Morphology: Plants are epilitic, attached on rocks by central tuft of rhizoids. Thalli are globose, solid, spongy, erect, up to 1.7 cm in height, 1.4 cm in diameter, green in color, composed of a single, macroscopic, siphonous, coenocytic cell (Fig. 1). Utricles are cylindrical or clavate, slightly flattened or rounded at apex, often expanded below apex, 550–1100 µm in diameter in the upper portion, tapering toward the base, 280–500 µm in diameter in the upper portion, 1400–3800 µm in length (Figs. 2–8). Plug is located beneath the utricles (Fig. 9, p). Hairs are absent. Medullary filaments are colorless, cylindrical, 10–30 µm in diameter issued from the basal portion of the utricles (Figs. 4 and 9, m). Rhizoidal filaments are slender, under 10 µm in diameter, arising by outgrowths from the base of each utricle (Fig. 5, r), elongated up to 3 mm, often with a digitate hapteron (Fig. 10, h).

Specimens examined: Ogasawara Islands, Japan: Off Cape Yagiyama (41.3–42.5 m in depth), Futami Bay (27°2′17″N, 142°6′27″E), 16 July 2017, leg. T. Kitayama (TNS-AL 209135); Kurazonone (53.5–53.9 m in depth), Chichijima Island (27°30′55″N, 142°6′20″E), 16 July 2017, leg. T. Kitayama (TNS-AL 209136).

Japanese name: Chikubi-miru.

Distribution: Indian Ocean: Western Australia (type locality), Tanzania (Silva, Basson and Moe, 1996); Pacific Ocean: American Samoa (Skelton and South, 2004), Fiji (N’Yeurt, South and Keats, 1996), Hawaiian Islands (Abbott and Huisman, 2004), Japan (Ogasawara Islands, the present study).

The size of utricles in the eight globular species of *Codium* are showed in Table 1.

Table 1. Comparison of the size of utricles among the globular species of *Codium*

<table>
<thead>
<tr>
<th>Species</th>
<th>Outward form</th>
<th>Utricles</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. bursa (Burrows, 1991)</td>
<td>spherical</td>
<td>250–550 µm</td>
<td>up to 4.5 mm</td>
</tr>
<tr>
<td>C. elisabethiae (O. C. Schmidt, 1929)</td>
<td>globose to subglobose, hollow</td>
<td>350–485 µm</td>
<td>1.6–2.5 mm</td>
</tr>
<tr>
<td>C. globosum (Lucas, 1927)</td>
<td>globose, solid</td>
<td>275–350 µm</td>
<td>3 mm</td>
</tr>
<tr>
<td>C. megalophyllum (Silva, 1959)</td>
<td>hemispherical or globose, hollow</td>
<td>1–3.9 mm</td>
<td>5–12 mm</td>
</tr>
<tr>
<td>C. minus (Okamura, 1915; Verbruggen et al., 2012)</td>
<td>globose, oval, obovoid</td>
<td>160**–564 µm</td>
<td>1.4–2.6 mm**</td>
</tr>
<tr>
<td>C. ovale (Itono, 1973)</td>
<td>globose, pedicellate, hollow</td>
<td>170–230 µm</td>
<td>660–715 µm</td>
</tr>
<tr>
<td>C. papenfussii (Silva, 1959)</td>
<td>hemispherical to subglobose, hollow</td>
<td>300–680 µm</td>
<td>2.4–5.4 mm</td>
</tr>
<tr>
<td>C. pomoideus (Silva and Womersley, 1956)</td>
<td>globose, subglobose, hollow</td>
<td>69–175 µm</td>
<td>1–3 mm</td>
</tr>
<tr>
<td>C. saccatum (Kraft, 2007)</td>
<td>subspherical, hollow</td>
<td>120–230 µm</td>
<td>200–300 µm</td>
</tr>
<tr>
<td>C. spongiosum (Kraft, 2007)</td>
<td>subspherical, partially fused globose</td>
<td>165–600 µm</td>
<td>1850–5000 µm</td>
</tr>
<tr>
<td>C. mamillosum (Silva and Womersley, 1956)</td>
<td>globose</td>
<td>400–1000 µm</td>
<td>3–9 mm</td>
</tr>
<tr>
<td>C. mamillosum (the present study)</td>
<td>globose, solid</td>
<td>550–1100 µm</td>
<td>1400–3800 µm</td>
</tr>
</tbody>
</table>

*) Okamura (1915) treated this species as "*C. mamillosum". **) Estimated from the fig. 7 in Verbruggen et al. (2012).
from the Ogasawara Islands agree well with *Codium mamillosum* in the diameter of utricles showed by Silva and Womersley (1956) and their utricles are distinguishably larger in diameter than most of the globular members of the genus (except *C. megalophysum*).

Discussion

The present alga collected from the mesophotic zone off the Ogasawara Islands possess the characteristics of *Codium mamillosum* Harvey in morphology. This is the first record of a genuine *C. mamillosum* from Japan. *C. mamillosum* is similar in appearance to the other globular species of the genus *Codium*, though this species is different in the diameter of utricles from the other globular species of the genus *Codium* (Table 1). *C. mamillosum* has remarkably thicker utricles (550–1100 µm in diameter) than most species of globular *Codium*. The presence of this species suggests that mesophotic marine algal flora of Ogasawara Islands has close relationships to those of the South Pacific Ocean.

As a result, presently five species of the globular *Codium* including *Codium mamillosum* are distributed to Japan, though their distribution may not be accurate because they are so similar each other in appearance. To clarify the distribution of this species, anatomical observations and molecular analyses are required.

Key to the species of globular *Codium* in Japan

1a. Plant a hollow membranous sac ...2
1b. Plant a solid spongy ball ..3
2a. Utricles 200–300 µm in length ... *C. saccatum*
2b. Utricles 660–715 µm in length ... *C. ovale*
3a. Utricles 160–600 µm in diameter on the apex ...4
3b. Utricles 550–1100 µm in diameter on the apex ... *C. mamillosum*
4a. Thalli globose throughout the life ... *C. minus*
4b. Thalli globose when young, becoming irregularly protuberant as they grow *C. spongiosum*

Acknowledgments

I am grateful to Mr. Yoshiyasu Takase, the Ogasawara Fisheries Cooperative for collecting the material by dredge using his ship. I thank Mr. Kotaro Seno, Mr. Takayuki Miyazaki and Mr. Yuhei Tanaka, the Ogasawara Fisheries Center, Tokyo Metropolitan for providing me the facilities to processing the specimens. This study was supported by Grants-in-Aid for Scientific Research (no. 16K07496) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Kitayama, T. 2012. First record of *Discosporangium mesarthrocarpum* (Meneghini) Hauck (Phaeophyceae, Ocrophyta) from the Ogasawara Islands, Japan. Bulle-

nese).

