
Introduction

Lake Biwa, a freshwater lake located in central
Japan, is one of the world's few ancient lakes and
was formed about four million years ago
(Yokoyama, 1984; Kawabe, 1989, 1994; Meyers
et al., 1993). This lake harbors many coastal
plants that commonly inhabit the seashore. 
Calystegia soldanella (L.) Roem. et Schult. (Con-
volvulaceae) is one of these coastal plants, which
grows on sandy seashores in the temperate zone
including Japan. However, Lake Biwa harbors
this plant as landlocked populations. Chloroplast
DNA haplotype analysis and simple sequence 
repeat (SSR) analysis have revealed genomic sig-
natures indicating long-term isolation of inland
populations at Lake Biwa from coastal popula-
tions of C. soldanella (Noda et al., unpublished).

The landlocked plants at the freshwater lake
may have become physiologically differentiated

with regard to salt-tolerance as a result of adap-
tive evolution to the specific habitat over the long
term. Salinity damages plants via ion toxicity, 
osmotic stress, mineral deficiencies, physiological
and biochemical perturbations, and combinations
of these stresses (Munns, 1993, 2002; Neumann,
1997; Yeo, 1998; Hasegawa et al., 2000). Salinity
stress decreases photosynthetic activity through
stomatal and nonstomatal factors (Yeo et al.,
1985; Sharma and Hall, 1991; Dionisio-Sesc and
Tobita, 2000). Although the nonstomatal factors
are not yet fully understood, the stomatal factors
imply that salinity stress may alter photosynthe-
sis mostly due to a reduction in stomatal conduc-
tance. Decreased water-potential and subsequent
stomatal closure result in a decreased capacity of
the mesophyll to fix CO2 (Seemann and Critch-
ley, 1985; Bethke and Drew, 1992; Delfine et al.,
1998). Stomatal closure carries a risk of photoin-
hibition, and consequently, decreased photosyn-
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thetic activity.
The efficiency of photosynthesis can be mea-

sured as chlorophyll fluorescence. In the photo-
synthetic apparatus, light is absorbed by the 
antenna pigments, and the excitation energy is
transferred to the reaction centers of the two pho-
tosystems. There the energy drives the primary
photochemical reactions that initiate photosyn-
thetic energy conversion. In low light under opti-
mal conditions, primary photochemistry occurs
with high efficiency. A minor competing process
involving the deactivation of excited pigments 
is the emission of chlorophyll a fluorescence
(Krause, 1991) as a result of photosystem II
(PSII) photochemistry. In general, photochemical
fluorescence quenching is caused by a decrease
in the photochemical efficiency of PSII attributed
to damage of the PSII reaction centers caused 
by salinity (Masojidek and Hall, 1992; Hasson
and Poljakoff-Mayber, 1981; Kura-Hotta et al.,
1987). Chlorophyll fluorescence can provide de-
tailed information on PSII photochemistry, which
is sensitive to environmental stresses such as
strong light, low or high temperature, drought,
and salinity (e.g., Larcher et al., 1990). Thus,
chlorophyll fluorescence is an appropriate indica-
tor of salt stress (Godfrey and Kerr, 2000).

In this study, we used chlorophyll fluorescence
analysis to detect physiological differentiation
between inland and coastal individuals of Ca-
lystegia soldanella in terms of their response to
salinity stress. In addition, we observed leaf mor-
phology of the inland and coastal individuals, as
leaf morphology is an important feature of plant
salt tolerance.

Materials and Methods

Plant growth and salt treatment
Rhizomes of Calystegia soldanella were col-

lected from coastal and lakeshore populations:
Shimohama Beach on the coast of the Sea of
Japan (39°37�N, 140°04�E) and Omimaiko at
Lake Biwa (35°08�N, 135°34�E), respectively.
Individuals were sampled at intervals of more
than 5 m to collect materials originating from dif-

ferent genets. They were planted in 0.8-L pots
filled with compost (mixture of vermiculite and
gravels) and grown in a greenhouse at Kyoto
University (35°13�N, 135°47�E), Japan. Voucher
specimens were deposited in TNS and KYO. The
plants were kept in a greenhouse during experi-
ment. The plants were cultivated for more than
one month in preparation for the experiments and
were given sufficient water while nutrients were
supplied by application of 1/4000 diluted liquid
fertilizer (Hyponex solution) each week.

Eight individuals each from coastal and inland
populations were subjected to the following con-
ditions: 1. Saltwater (200 mM) irrigation every 3
days for 2 weeks; 2. Freshwater irrigation every 3
days for 2 weeks; 3. Saltwater (300 mM) spray
every day, with saltwater (200 mM) irrigation
every 3 days for 1 week; 4. Saltwater (300 mM)
spray every day, with saltwater (200 mM) irriga-
tion every 3 days for 2 weeks. Control plants
were assigned to the following conditions: fresh-
water irrigation to inland individuals (control for
inland individuals) and saltwater irrigation to
coastal individuals (control for coastal individu-
als). Ten individuals were assigned to each con-
trol condition. Saltwater spray was conducted to
provide fine mist without forming drops on the
leaf surface. For the saltwater irrigation (condi-
tion 3 above), the 200 mM NaCl concentration
was reached incrementally in 50-mM steps every
2 days prior to the start of the experiment.

Fluorescence measurements
Chlorophyll fluorescence was measured with a

pulse amplitude modulation (PAM) unit (LI6400-
40, Li-Cor Environmental Inc.). We measured
basic fluorescence upon exposure to weak light
after dark adaptation (Fo), maximum fluores-
cence (Fm), and Fv/Fm. Fv/Fm is the ‘intrinsic
efficiency’ (Maxwell and Johnson, 2000) or 
the ‘current photochemical capacity’ of PSII
(Bolhàr-Nordenkampf and Öquist, 1993), where
Fv is the ‘variable fluorescence,’ ‘minimum fluo-
rescence’ is Fo, and the ‘maximum fluorescence’
is Fm. Healthy leaves usually show Fv/Fm val-
ues between 0.66 and 0.8; lower values indicate
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structural damage to PSII [calculated according
to Bolhàr-Nordenkampf and Öquist (1993) for a
common floodplain species as described by
Waldhoff et al. (2000)]. Measurements were
made on fully expanded and mature leaves. Each
sample had been pre-darkened for at least 30 min
prior to the measurements to avoid nonphoto-
chemical quenching. Other samples were mea-
sured under predawn conditions to investigate
chronic photoinhibition of samples affected by
their environment (Krause et al., 1995, Kitao et
al., 2003). We collected data under two condi-
tions, predawn and light. A red irradiance of
7000 mmol m�2 s�1 was used for the measure-
ments.

Light microscope analysis
To analyze morphological structure, fully ex-

panded and mature leaves were collected, and
cross sections of these leaves were investigated
with a light microscope (BX-51 OLYMPUS).
Photographs of the observed cross sections were
taken with a digital camera (C-4040ZOOM
OLYMPUS) attached to a light microscope.
Fresh and mature leaves were sectioned with a
razor blade. Cross sections of 50–100 mm in
thickness were used for the observations.

Statistical analysis
Differences between Fv/Fm values among

treatments were tested by one-way analysis of
variance (ANOVA). All statistical analyses were
performed with Excel 2003 for WINDOWS XP.

Results

The relative stress demonstrated by the ratio of

observed Fv/Fm is presented in Figs. 1 and 2.
The data from the Lake Biwa lakeshore individu-
als (Fig. 1) suggested that treatment with 200
mM saltwater irrigation caused no reduction in
the Fv/Fm ratio, whereas individuals subjected to
saltwater spray (for 1 or 2 weeks) showed a sig-
nificant decrease in this value under both sets of
light conditions (P�0.05, ANOVA). The two pe-
riods (1 or 2 weeks) of saltwater spray treatments
were not significantly different. Individuals ex-
posed to saltwater spray for 2 weeks had the low-
est values (approximately 0.63) when measured
without predawn treatment. Overall, the chloro-
phyll fluorescence of individuals measured under
predawn conditions tended to show higher mean
values than that of individuals measured without
predawn treatment, although ANOVA did not
demonstrate significant differentiation between
the treatments (see Fig. 1).

Coastal individuals from the Sea of Japan 
consistently represented the highest values
(Fv/Fm�0.7) among all treatments, including
exposure to the harshest saltwater spray for 2
weeks (Fig. 2). The only significant differentia-
tion (as assessed by ANOVA) was between fresh-
water irrigation and exposure to saltwater spray
for 2 weeks.

Transverse sections of leaves examined after
each treatment are shown in Fig. 3. The thickness
of the leaves was consistently greater in coastal
individuals compared to inland individuals; how-
ever, the thickness varied greatly within and
among individuals in the same treatment group.

Discussion

Our results suggest that inland individuals at
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Table 1. Baseline Fv/Fm (mean�s.e.) of lakeshore and coastal individuals of Calystegia soldanella

Lakeshore individuals Coastal individuals

Treatment predawn light predawn light

Freshwater irrigation 0.767�0.004 0.740�0.016 0.775�0.007 0.762�0.008
Saltwater irrigation 0.794�0.016 0.772�0.030 0.808�0.030 0.735�0.062
Saltwater spray (1 week) 0.701�0.040 0.672�0.071 0.768�0.046 0.764�0.062
Saltwater spray (2 weeks) 0.663�0.175 0.630�0.138 0.700�0.129 0.716�0.097



Lake Biwa have significantly inhibited Fv/Fm
values after exposure to saltwater spray on leaf
blades, whereas coastal individuals showed no
significant decrease in the Fv/Fm value. The dif-
ference in photochemical fluorescence quenching
between the inland and coastal individuals im-
plies that their physiological characteristics relat-
ed to salt tolerance in combination with the
anatomy of their leaf structure may be related to
the historical background of long-term isolation
of coastal plants at freshwater Lake Biwa.

Effect of salinity on chlorophyll fluorescence
Inland vs. coastal differentiation of the re-

sponse to salinity was identified in experiments
treating leaves with saltwater spray. The photo-
chemical efficiency of C. soldanella plants from
coastal populations was unaffected by exposure
to saltwater spray for 1 week. Conversely, the 
inland plants had decreased photochemical effi-
ciency as a result of exposure to saltwater spray.
Tolerance to airborne saltwater is critical to the
survival of the coastal populations; in coastal
plant communities, the distribution of species
can sometimes be determined according to their

tolerance to airborne saltwater (Oosting and
Billings, 1942; Oosting, 1945; Boyce, 1954; Bar-
bour, 1978; Barbour et al., 1985; Rozema et al.,
1985; Sykes and Wilson, 1988; Hesp, 1991;
Maun, 1994; Greipsson and Davy, 1996; Wilson
and Sykes, 1999). Sandblasting accompanied by
saltwater spray is one of the main factors inhibit-
ing the survival and growth of inland plants on
coastal sand dunes (Ogura and Hiroshi, 2008).
Salinity stress caused by saltwater spray affected
only the inland individuals at Lake Biwa, and
caused stomatal closure, reduction of CO2 assim-
ilation, and subsequent photoinhibition. These
results are correlated with their adaptation to a
specific habitat, i.e., coastal individuals have
physiological adaptations to salinity stress,
whereas inland individuals have lost those adap-
tations as a result of their long-term isolation at a
freshwater lake.

The leaf anatomy of individuals from both
habitats also suggested that anatomical structure
may be related to physiological differentiation.
Inland individuals had thinner leaf blades, where-
as coastal ones had thicker leaf blades (see Fig.
3), possibly due to differences in the size of the
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Fig. 2. Relative stress of Calystegia soldanella
coastal individuals at Shimohama, on the coast
of the Sea of Japan. Vertical lines on the bars
show the standard error. Letters (a, b and A)
above each bar indicate significant differences
detected by ANOVA. Scores are the ratio of
the observed Fv/Fm values over the baseline
measurements (Table 1).

Fig. 1. Relative stress of Calystegia soldanella
lakeshore individuals at Omimaiko, Lake
Biwa. Vertical lines on the bars show the stan-
dard error. Letters (a–c, A–C) above each bar
indicate significant differences as assessed by
ANOVA. Scores are the ratio of the observed
Fv/Fm over the baseline measurements (Table
1).
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Fig. 3. Transverse leaf sections illustrating the contrast between inland and coastal populations.
a, c and e: inland individuals; b, d and f: coastal individuals.
a and b: freshwater irrigation for two weeks; c and d: saltwater irrigation for two weeks; e and f: saltwater
spray for two weeks.



cells in the palisade and spongy tissue (i.e., cell
size is larger in leaves of coastal individuals). In
addition, our preliminary study on cuticle thick-
ness of adaxial surfaces of leaf blades suggested
that the cuticle layer tends to be thicker in coastal
individuals (mean 0.747 mm [n�5]) compared to
that of inland individuals (mean 0.368 mm
[n�5]) based on wet-SEM observations using
fresh leaves; however, the cuticle thickness was
too small to measure by SEM microscopy in the
current study. The cuticle on the outermost layer
of the leaf blade plays an important role in deter-
mining tolerance to certain environments (Martin
and Juniper, 1970). For example, Sonchus oler-
aceus, Euphorbia peplis, and Eryngium mariti-
mum are species that repel salt droplets by their
highly hydrophobic cuticle, and thus protect the
leaf tissue from salt damage (Waisel, 1972). In-
creased leaf succulence in plants has been found
to be the result of increasing salt exposure
(Boyce, 1951; Hesp, 1991; Maun, 1994); e.g.,
Boyce (1951) found that leaf succulence in dune
plants (Cuscuta veatchii: Cuscutaceae) was pri-
marily due to airborne salt loading on the leaves
and branches, resulting in salt-induced hypertro-
phy and the doubling or tripling of leaf thickness.

Molecular phylogeography of C. soldanella
using cpDNA and nSSR makers revealed the het-
erogeneous genetic structure between the inland
and coastal populations, corroborating the long-
term isolation of coastal plants at Lake Biwa
(Noda et al., unpublished). Long-term isolation
of coastal plants at Lake Biwa may have caused a
loss of adaptations related to salinity tolerance.
However, in evaluating the present findings (pho-
tochemical fluorescence quenching in milder
salinity, thinner leaf blade, and thinner cuticle
layer in inland individuals), we can not dismiss
the possibility that these differences may be inde-
pendent adaptations or correlated factors. Further
study is needed to elucidate the mechanisms of
the intraspecific differentiation of adaptation to
inland-coastal habitats.
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