Flavonoids from the Leaves of Betalain-containing Species, *Phytolacca americana* (Phytolaccaceae)

Tsukasa Iwashina¹ and **Junichi Kitajima**²

¹ Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan
E-mail: iwashina@kahaku.go.jp

² Laboratory of Pharmacognosy, Showa Pharmaceutical University, Higashi-tamagawagakuen 3, Machida, Tokyo, 194–8543 Japan

Abstract Flavonoids in the leaves of *Phytolacca americana* (Phytolaccaceae), which is native to North America and growing in Japan as a cosmopolitan weed, were surveyed. They were isolated by paper, column and high performance liquid chromatography, and identified as kaempferol 3-O-glucoside, quercetin 3-O-glucoside and kaempferol 3-O-apiofuranosyl-(1→2)-glucoside by UV spectral survey, acid hydrolysis, LC-MS, ¹H and ¹³C NMR, and direct TLC and HPLC comparisons with authentic samples. The species exclusively synthesizes the betalain pigments and cannot make anthocyanins, which are major pigments in almost vascular plants. However, it was reconfirmed by this survey that *P. americana* can make flavonol glycosides which biosynthetically related to anthocyanins. Moreover, it was presumed by comparisons with the previous reports that the geographic chemical variations are produced in the species.

Key words: Betalain-containing species, Flavonols, Kaempferol, *Phytolacca americana*, Phytolaccaceae, Quercetin.

Introduction

Phytolacca americana L. (=*P. decandra* L.) is originally native to North America, but now growing in Japan as a cosmopolitan weed. Four betacyanin pigments, betanin, isobetanin, prebetanin, isoprebetanin, and four acylated betacyanins, betanidin and isobetanidin 5-O-[(5″-O-E-feruloyl)-2′-O-apiofuranosyl]-glucosides, lampranthin II and isolampranthin II, have been reported from the stems, ripening fruits and cell cultures (Wyler and Dreiding, 1961; Piattelli and Minale, 1964; Schliemann et al., 1996). However, anthocyanin pigments, which occur in almost vascular plants, never been reported. On the other hand, some flavonols, *i.e.*, kaempferol 3-O-diglycoside and quercetin 3,7-di-O-glycoside (Saunders and McClure, 1976), quercetin and kaempferol glycosides (Richardson, 1978; Burrett et al., 1981), rhamnocitrin and rhamnetin 3-O-glucosides and 3-O-rhamnosylglucosides, and quercetin 3-O-rhamnosylglucoside (Caulkins and Wyatt, 1990), kaempferol 3-O-glucoside, 3-O-xylosyl-(1→2)-glucoside and 3-O-neohesperidoside (Bylka and Matlawska, 2001) have been reported from the leaves. In also other *Phytolacca* species, flavonol glycosides, *e.g.*, rhamnocitrin, rhamnadin and quercetin 3-O-rhamnosylglucosides, and rhamnocitrin and rhamnetin 3-O-glucosides from *P. rigida* Small. (Caulkins and Wyatt, 1990), kaempferol and isokaempferide 3-O-glucosyl-(1→2)-galactoside and 3-O-xylosyl-(1→2)-galactoside from *P. thyrsiflora* Fenzl. ex Schmidt (Haraguchi et al., 1988), and ombuin 3-O-rutinoside from *P. dioica* L. (Marini-Bettòlo et al., 1950; Hörhammer et al., 1968), together with betacyanin pigments. Moreover, the presence of proanthocyanidins, which closely biosynthetically related to the anthocyanins, has been shown in the seeds of *P. americana* (Bittrich and Amaral, 1991). It has been shown that betalain pigments, betacyanins and betaxanthins, coexist with al-
most flavonoid classes except for anthocyanins in the betalain-producing nine families, Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Chenopodiaceae, Didieraceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae belonging to the order Caryophyllales (Iwashina, 2001). However, it was recently proved that dihydroflavonol 4-reductase (DFR) and anthocyanin synthases (ANSs), which directly participate anthocyanin synthesis, are present in *P. americana* and also *Spinacia oleracea* L. (Shimada *et al.*, 2004, 2005). Thus, the accumulation of flavonols in *P. americana* suggests that the steps of anthocyanin biosynthesis from dihydroflavonols to anthocyanins are blocked (Fig. 1) (Shimada *et al.*, 2007).

In this paper, characterization of the flavonols from the leaves of *P. americana* in Japan is described and qualitatively compared with those of foreign populations previously reported.

Materials and Methods

Extraction and isolation of flavonoids from the plant materials

Fresh leaves (306 g) of *Phytolacca americana* L., which are naturally growing in Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Japan, were extracted with MeOH. After concentration, petroleum ether was added in aqueous residue and lipophilic components were removed. The concentrated extracts were applied to preparative high performance liquid chromatography (prep. HPLC). Five fractions (fr. 1–5) obtained by prep. HPLC were purified by Sephadex LH-20 column chromatography using solvent system: 70% MeOH, respectively. Flavonoid 1 was obtained as pale yellow powder (ca. 30 mg) from fr. 5. Fractions 1–4 were applied to preparative paper chromatography using solvent system: BAW (*n*-BuOH/HOAc/H$_2$O = 4: 1: 5, upper phase) and the isolated flavonoids were purified by Sephadex LH-20 column chromatography (70% MeOH). Flavonoids 2 (ca. 20 mg) and 3 (ca. 30 mg) were obtained as pale yellow powders, respectively.

High performance liquid chromatography (HPLC)

Analytical HPLC was performed with Shimadzu HPLC systems using a Senshu Pak PEGASIL ODS column (I.D. 6.0×150 mm; Senshu Scientific Co., Ltd.), at a flow-rate of 1.0 ml min$^{-1}$. Detection was 350 nm and eluent was MeCN/H$_2$O/H$_3$PO$_4$ (22: 78: 0.2). Prep. HPLC was performed with Tosoh HPLC systems using Senshu Pak PEGASIL ODS column (I.D. 10.0×250 mm; Senshu Scientific Co., Ltd.), a flow-rate of 2.0 ml min$^{-1}$ and eluent was MeCN/H$_2$O (22: 78).

Liquid chromatograph-mass spectra (LC-MS)

LC-MS was performed with Shimadzu LC-MS systems using Senshu Pak PEGASIL ODS column (I.D. 2.0×150 mm; Senshu Scientific Co., Ltd.), at a flow-rate of 0.1 ml min$^{-1}$, eluent: MeCN/H$_2$O/HCOOH (15: 80: 5), and ESI$^{+}$ 4.5 kV and ESI$^{-}$ 3.5 kV, 250°C.

Identification of flavonoids

The isolated flavonoids were identified by UV spectral survey according to Mabry *et al.* (1970), LC-MS, acid hydrolysis (in 12% aq. HCl, 100°C, 30 min) and characterization of its products, 1H and 13C NMR, and direct TLC [solvent systems: BAW, BEW (*n*-BuOH/EtOH/H$_2$O = 4: 1: 2.2) and 15% HOAc] and HPLC comparisons with authentic samples. TLC, HPLC, UV, acid hydrolysis, 1H and 13C NMR and LC-MS data of the isolated flavonoids are as follows.

Kaempferol 3-O-glucoside (astragalin, 1).

TLC: Rf 0.80 (BAW), 0.81 (BEW), 0.40 (15%HOAc); UV—dark purple, UV/NH$_3$—dark greenish yellow. HPLC: Rt (min) 9.41. UV: λ_{max} (nm) MeOH 266, 296sh, 347; +NaOMe 275, 325, 396 (inc.); +AlCl$_3$ 275, 304, 348, 393; +AlCl$_3$/HCl 275, 303, 347, 394; +NaOAc 274, 310, 383; +NaOAc/H$_2$BO$_3$ 267, 296sh, 348. Acid hydrolysis: kaempferol and glucose. LC-MS: m/z 449 [M+H]$^+$, 447 [M–H]$^-$ (kaempferol+1 mol glucose); m/z 287 [M–162+H]$^+$ (kaempferol).

Quercetin 3-O-glucoside (isoquercitrin, 2).
TLC: Rf 0.67 (BAW), 0.67 (BEW), 0.29 (15%HOAc); UV–dark purple, UV/NH₃–yellow.

HPLC: Rt (min) 6.31. UV: λmax (nm) MeOH 257, 266sh, 296sh, 358; NaOMe 273, 324, 396 (inc.); AlCl₃ 275, 303, 350, 392; AlCl₃/HCl 275, 302, 347, 393; NaOAc 274, 309, 384; NaOAc/H₃BO₃ 261, 296, 378. Acid hydrolysis: quercetin and glucose. LC-MS: m/z 465 [M+H]⁺, 463 [M–H]⁻ (quercetin+1mol glucose); m/z 303 [M–162+H]⁺ (quercetin).

Kaempferol 3-O-apiofuranosyl-(1→2)-glucoside (3). TLC: Rf 0.74 (BAW), 0.80 (BEW), 0.63 (15%HOAc); UV–dark purple, UV/NH₃–dark greenish yellow. HPLC: Rt (min) 6.86. UV: λmax (nm) MeOH 266, 296sh, 349; NaOMe 275, 324, 396 (inc.); AlCl₃ 275, 303, 350, 392; AlCl₃/HCl 275, 302, 347, 393; NaOAc 274, 309, 384; NaOAc/H₃BO₃ 261, 296, 378. Acid hydrolysis: kaempferol, apiose and glucose.

1H NMR (600 MHz, pyridine-d₅): δ 13.46 (1H, s, 5-OH), 8.54 (2H, dd, J=2.0 and 8.9 Hz, H-2,6'), 7.31 (2H, dd, J=2.0 and 8.9 Hz, H-3,5'), 6.71 (1H, d, J=2.0 Hz, H-6), 6.70 (1H, d, J=2.1 Hz, H-8), 6.62 (1H, d, J=0.9 Hz, apiosyl H-1), 6.61 (1H, d, J=7.9 Hz, glucosyl H-1), 4.83 (1H, d, J=9.3 Hz, apiosyl H-4), 4.58 (1H, dd, J=7.9 and 15.1 Hz, glucosyl H-2), 3.9–4.5 (m, sugar protons). 13C NMR (150 MHz, pyridine-d₅): δ 156.7 (C-2), 134.5 (C-3), 178.7 (C-4), 162.9 (C-5), 99.7 (C-6), 165.7 (C-7), 94.4 (C-8), 157.4 (C-9), 105.3 (C-10), 122.2 (C-1'), 131.8 (C-2', 6'), 116.2 (C-3',5'), 161.6 (C-4'); δ (apiose) 110.7 (C-1), 78.1 (C-2), 81.0 (C-3), 75.9 (C-4), 66.4 (C-5); δ (glucose) 100.5 (C-1), 78.6 (C-2), 79.0 (C-3), 71.6 (C-4), 78.9 (C-5), 62.3 (C-6). LC-MS: m/z 579 [M–H]⁻ (kaempferol+each 1mol apiose and glucose); m/z 449 [M–132+H]⁺ (kaempferol+1 mol glucose).

Results and Discussion

Four flavonol peaks appeared on the chromatograms in this survey. Of their flavonoids, three ones (1–3) could be isolated as pale yellow powders. Flavonoid 1 was kaempferol glucoside which was shown by acid hydrolysis and characterization of its products. The attachment of 1 mol glucose to 3-position of kaempferol was shown by LC-MS and UV spectral survey according to Mabry et al. (1970). Finally, compound 1 was identified as kaempferol 3-O-glucoside (astragalin, Fig. 2) by direct TLC and HPLC.
comparison with authentic sample obtained from the fronds of *Cyrtomium falcatum* (L. f) C. Presl (Dryopteridaceae) (Iwashina *et al.*, 2006).

Astragalin has been widespread distributed in vascular plants including the betalain-producing species, *e.g.*, *Conophytum* spp. (Aizoaceae) (Reznik, 1957), *Echinocereus* spp. (Cactaceae) (Leuck and Miller, 1982; Miller, 1988), *Chenopodium fremontii* S. Watson (Chenopodiaceae) (Crawford and Mabry, 1978) and *Claytonia virginica* L. (Portulacaceae) (Doyle, 1983). This glycoside has already been found in *P. americana* from Poland (Bylka and Matlawska, 2001).

Flavonoid 2 liberated quercetin and glucose by acid hydrolysis and was shown to be 3-substituted quercetin by UV spectral properties. Since the molecular ion peak, \(m/z \) 465 [M+H]+ appeared by LC-MS, the attachment of 1 mol glucose to quercetin nucleus was suggested. By direct TLC and HPLC comparison with authentic isoorquercitrin from the fronds of *Cyrtomium falcatum* (Iwashina *et al.*, 2006), compound 2 was identified as quercetin 3-O-glucoside (Fig. 3).

Isoquercitrin is also common flavonol glycoside in plants and has already been reported from *Claytonia* spp. (Miller, 1981), *Chenopodium* spp. (Crawford, 1975; Crawford and Mabry, 1978), *Opuntia* spp. (Cactaceae) (Clark and Parfitt, 1980; Clark *et al.*, 1980), *Echinocereus* spp. (Leuck and Miller, 1982; Miller, 1982) and *Neria meyeri* Schwantes (Aizoaceae) (Kolodziej, 1982) etc. in the betalain-producing species. However, quercetin 3-O-glucoside was found in *P. americana* for the first time.

It was shown by UV spectral survey that flavonoid 3 has free 5-, 7- and 4′-hydroxyl and substituted 3-hydroxyyl groups. Since kaempferol as an aglycone, and apiose and glucose as glycosidic sugars were liberated by acid hydrolysis, original glycoside is kaempferol 3-O-apiosylglucoside or 3-O-glucosylapioside. A fragment ion peak, \(m/z \) 449 [M−132+H]+ (calculated for kaempferol+1 mol glucose) appeared by LC-MS survey, showing that flavonoid 3 is kaempferol 3-O-apiosylglucoside.

Four aromatic proton signals corresponding to H-2′, 6′ (\(\delta \) 8.54), H-3′, 5′ (\(\delta \) 7.31), H-6 (\(\delta \) 6.71) and H-8 (\(\delta \) 6.70), and two sugar anmeric protons, apiosyl H-1 (\(\delta \) 6.62, \(d_J \) 0.9 Hz) and glucosyl H-1 (\(\delta \) 6.61, \(d_J \) 7.9 Hz) appeared on \(^1H \) NMR spectrum. Sugar-sugar linkage between apiose and glucose was determined as apiosyl-(1→2)-glucoside by \(^{13}C \) NMR spectrum, *i.e.* significant shift to lower field of C-2 carbon signal (\(\delta \) 78.6) of glucose (Fossen and Andersen, 2006). Thus, original glycoside 3 was completely identified as kaempferol 3-O-β-D-apiofuranosyl-(1→2)-O-β-D-glucopyranoside (Fig. 4).

Kaempferol 3-O-apiosylglucoside is very rare compound and has been isolated from only one plant species, *Securidaca diversifolia* S. F. Blake (Polygalaceae) until now (Hamburger *et al.*, 1985).

Twelve flavonoids have been isolated from *P. americana* leaves and completely or partially characterized (Table 1). All of them were
flavonol glycosides based on kaempferol and quercetin, and their 7-methyl ethers. It was shown that the betalain-producing families, i.e. Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Chenopodiaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae, can synthesize the almost classes of flavonoids, flavones, flavonols, isoflavonoids, chalcones, dihydroflavonols, aurones, flavanones, and also favans and proanthocyanidins which closely biosynthetically related to anthocyanins, except for dihydrochalcones, anthocyanins and biflavonoids (Iwashina, 2001). Of their flavonoid classes, major ones are flavone and flavonol. It was re-confirmed by the present survey that the flavonoid class of *P. americana* is flavonol. However, their flavonoid composition was geographically different with collection sites, i.e., methoxylated flavonols, rhamnocitrin and rhamnetin 3-O-glycosides and 3-O-rhamnosylhexosides, and quercetin 3-O-rhamnosylglucoside from USA (Caulkins and Wyatt, 1990), kaempferol 3-O-glucoside, 3-O-neohesperidoside and 3-O-xilosyl-(1→2)-glucoside from Europe, Poland (Bylka and Matlawska, 2001), and kaempferol 3-O-glucoside and 3-O-apiosyl-(1→2)-glucoside, and quercetin 3-O-glucoside from Asia, Japan in this survey. Though *Phytolacca americana* is originally native to North America, but now growing in the world as a cosmopolitan weed, and geographic variations or chemical races may be occur in the species.

References

Clark, W. D. and Perfitt, B. D. 1980. Flower flavonoids of *Opuntia* series *Opuntiae*. *Phytochemistry* 19:

![Fig. 4. Chemical structure of kaempferol 3-O-apiofuranosyl-(1→2)-glucoside (3).](image)

<table>
<thead>
<tr>
<th>Flavonoids</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaempferol</td>
<td>3-O-diglycoside</td>
</tr>
<tr>
<td></td>
<td>3-O-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-xilosyl-(1→2)-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-apiosyl-(1→2)-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-neohesperidoside</td>
</tr>
<tr>
<td></td>
<td>Bylka and Matlawska (2001)</td>
</tr>
<tr>
<td></td>
<td>present paper</td>
</tr>
<tr>
<td>Rhamnocitrin</td>
<td>3-O-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-rhamnosylglucoside</td>
</tr>
<tr>
<td>Quercetin</td>
<td>3,7-di-O-glycoside</td>
</tr>
<tr>
<td></td>
<td>3-O-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-rhamnosylglucoside</td>
</tr>
<tr>
<td></td>
<td>Saunders and McClure (1976)</td>
</tr>
<tr>
<td></td>
<td>present paper</td>
</tr>
<tr>
<td></td>
<td>Caulkins and Wyatt (1990)</td>
</tr>
<tr>
<td></td>
<td>Caulkins and Wyatt (1990)</td>
</tr>
<tr>
<td>Rhamnetin</td>
<td>3-O-glucoside</td>
</tr>
<tr>
<td></td>
<td>3-O-rhamnosylglucoside</td>
</tr>
</tbody>
</table>
1856–1857.

