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Abstract Sequences of the trnS-trnG noncoding region chloroplast DNA from 40 species of the
Zamiaceae and Stangeriaceae families and 3 out group species (Cycadaceae) were used to recon-
struct phylogenetic trees using distance and parsimony methods. The distance tree was similar in
topology to the parsimony tree and both indicated that Encephalartos had a relationship closer to
Lepidozamia than Macrozamia. Encephalartos, Lepidozamia and Macrozamia comprised a mono-
phyletic tribe, while Dioon was a basal-sister of the subfamily Encephalartoideae clade. These two
analyses also revealed a close relationship between Microcycas and Zamia with high bootstrap
support. Although Stangeria and Ceratozamia have been placed in different families, they were
closer to each other, rather than Bowenia which is contrary to previous morphologically based clas-
sifications. The current study provides new molecular evidence that Stangeria and Bowenia are not

sister taxa and reinforces the close relationship between Encephalartos and Lepidozamia.
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Introduction

The cycads (Order Cycadales; Stevenson,
1992; Norstog and Nichols 1998; Schneider et
al., 2002) are a group of seed plants with ancient
origins that have been often termed as ‘living
fossils’, insomuch as the extant species are of lin-
eages little changed since their first occurrence in
the early Permian (Mamay, 1969; Zhu and Du,
1981; Gao and Thomas, 1989). They are distrib-
uted across the subtropical and tropical regions
of the world, i.e., Africa, Asia, Central America
and Australia with one species extending to
Japan. On the basis of morphology, cycads have
been classified into 3 families (Cycadaceae,
Stangeriaceae and Zamiaceae), with 11 genera
(Stevenson, 1992) and over 300 known species
(Hill et al., 2007). Whilst Cycadaceae is un-
equivocally unique (cf. Brenner ef al., 2003a,

Bowenia, Chloroplast DNA, Cycadales, Encephalartos, Lepidozamia, Macrozamia,

2003b), the distinction between Stangeriaceae
and Zamiaceae remains unclear when molecular
characters are analyzed, rather than those purely
from morphology (Hill et al., 2003; Chaw et al.,
2005).

In the past decade, chloroplast genes have
been used extensively to elucidate relationships
in seed plants. Chloroplast genes are the conse-
quences of an endosymbiotic event between a
eukaryotic host cell and an ancestor of the
cyanobacteria hence they have a slower mutation
rates in comparison with the nuclear genes (Cur-
tis and Clegg, 1984; Raven and Allen, 2003) with
their conserved nature useful for testing relation-
ships among genera thought to be closely related
(Gielly and Taberlet, 1994). In recent studies
using molecular markers such as the chloroplast
matK gene, trnlL intron and ITS2 rDNA se-
quences (Treutlein and Wink, 2002; Hill et al.,
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2003; Bogler and Francisco-Ortega, 2004; Chaw
et al., 2005) the intrafamilial classification of cy-
cads has been slightly modified, particularly in
the Zamiaceae family, where the genera En-
cephalartos (endemic to Africa) and Lepidoza-
mia (endemic to Australia) have been found to be
closer to each other rather than Macrozamia (en-
demic to Australia). These molecular phylogenet-
ic trees were not congruent with the Stevenson
(1992) classification that was based solely on
morphological characters and which included
Lepidozamia and Macrozamia in the subtribe
Macrozamiinae D.Stevenson and Encephalartos
in the subtribe Encephalartinae Benth. et Hook.f.;
both subtribes comprising the tribe En-
cephalarteae  Miq. within the subfamily En-
cephalartoideae D.Stevenson.

Currently, noncoding sequences of the chloro-
plast genome have been used as a new major
focus for studying plant molecular evolution.
Shaw et al. (2005) evaluated the relative level of
variability among 21 noncoding chloroplast
DNA regions in seed plants and the noncoding
regions (Tier 1) that provided the greatest num-
bers of PICs (Potential Informative Characters),
were identified as trnD-trnT, rpoB-trnC, trnS-
trnG, trnS-trnfM and trnT-trnlL. In the current
study we focus on the use of the trnS-trnG se-
quence (previously unused with cycads) to recon-
struct phylogenetic trees for developing relation-
ship hypotheses for within and between genera in
the Zamiaceae and Stangeriaceae families.

Material and Methods

DNA extraction and PCR

Total genomic DNA of nine genera and 40
cycad species (Table 1) was extracted from plants
cultivated in Tsukuba Botanical Garden. Voucher
specimens for each species are deposited in the
Herbarium of the National Museum of Nature
and Science (TNS). Three Cycas species, namely
C. revoluta, C. wadei and C. media, were includ-
ed in the present analysis to serve as out groups
following Hill et al. (2003) and in recognition of
the basal position of this genus in the Cycadales

(Brenner, 2003a).

In the present study, Plant DNeasy Mini Kit
(Quigen) was used for extracting DNA following
the manufacturer’s protocol. The trnS-trnG inter-
genic spacer region was amplified with primer
trnS 5 GCCGCTTAGTCCACTCAGC 3’ and
trnG 5 GAACGAATCACACTTTTACCAC 3’
(Hamilton, 1998). The polymerase chain reaction
(PCR) amplification was performed in 5 ul of the
reaction with the following components: 2.5 ul of
5XAmpDirect (Shimazu), 0.5 unit of Ex fagq
(Takara), 10 uM of each primer and 1 ul of ge-
nomic DNA. Amplifications were made in a
Perkin Elmer 9700 thermocycler with an initial
denaturing step of 5Smin at 94°C followed by 35
cycles of 30 sec at 94°C, 30 sec at 60°C, 1 min at
72°C and a final extension of 7min at 72°C. PCR
products were subjected to 1% agarose gel and
DNA bands were visualized by ethidium bromide
staining. The PCR products were purified using
the ExoSAP-IT kit (United States Biochemical).
Purified PCR product were sequenced with the
ABI Big Dye Terminator Cycle Sequencing Kit
V3.1 and run on 3130X/ Genetic Analyzer.

Data analysis

Sequences were edited and assembled using the
program ATGC var. 4 (GENETYX Co.) and were
initially aligned using Clustal W (Thompson et al.,
1994). The resulting data was imported into the
GENEDOC 2.6 program (Nicholas et al., 1997)
following by a manual adjustment. Two phyloge-
netic reconstruction methods (maximum parsimo-
ny (MP) and neighbor-joining (NJ) method) were
performed, using the program MEGA 4 (Tamura et
al., 2007). The MP analyses were conducted with
heuristic searches (close-neighbor interchange)
using the random addition trees. Bootstrap analy-
ses used 1,000 replicates for this method. For the
NJ method, analyses were constructed with the nu-
cleotide substitution model (Maximum Composite
Likelihood Method) with the number of bootstrap
replicates was set to 1,000. All positions contain-
ing alignment gaps and missing data were elimi-
nated only in pairwise sequence comparisons
(Pairwise deletion option).
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Table 2. Average base frequencies for trnS-G intergenic spacer of 43 Cycad species

Alignment Base

Region length Transition Transversion
(base pairs) A C G T

trnS-G 903 30.3 17.6 20.3 319 4.102 3.106

The sequences obtained were submitted to the
DDBIJ/EMBL/GenBank databases (Table 1).

Results and Discussion

Sequence characteristics

The length of the trnS-trnG intergenic spacer
averaged 815 base pairs (bp) and the nucleotide
frequencies were 30.3% (A), 17.6% (C), 20.3%
(G) and 31.9% (T). This region showed a low GC
content (37.9%), while it represented a high AT
content (62.2%) which is characteristic of the
chloroplast genome (Morton, 1995). The transition
(Ts)/transversion (Tv) ratio was 1.32 (Table 2).

The sequence alignment of this region was
903 bp and appeared with 22 indels (insertion/
deletion). These results indicated that the trnS-
trnG region had a high level of variation among
cycad genera.

Phylogenetic analyses

MP was reconstructed using the close-neigh-
bor-interchange (CNI) with the random addition
tree 100 replications producing 188 equally most
parsimonious trees with trees length of 540. The
consistency index was 0.630556, the retention
index was 0.819048 and the composite index was
0.617319 (0.516455) for all sites and parsimony-
informative sites (in parentheses). There were a
total of 725 positions in the final dataset, out of
which 174 were informative. A consensus of
these 74 trees is presented in Fig. 1. NJ (Fig. 2)
was reconstructed by the Maximum Composite
Likelihood method and was in the units of the
number of base substitutions per site. The MP
and NJ trees supported monophyly of each genus
with high bootstrap values. In the MP tree clades
consisted of ((Stangeria, Ceratozamia), ((Micro-

cycas, Zamia), (Bowenia, (Dioon, (Macrozamia,
(Encephalartos, Lepidozamia)))))) (Figs. 1, 2).
Both the MP and NIJ analyses support the
hypothesis that the tribe Encephalarteae (En-
cephalartos, Macrozamia and Lepidozamia) and
tribe Zamieae (Microcycas and Zamia) are re-
spectively monophyletic with high bootstrap val-
ues agreeing with Stevenson (1992), and then
Dioon (endemic to Central America) was taken
up as a sister group to this Encephalartoideae
clade with a bootstrap value. The current results
indicate that Encephalartos is more closely relat-
ed to Lepidozamia than to Macrozamia therefore
disagreeing with Stevenson’s (1992) classifica-
tion of tribe Encephalarteae based only on mor-
phology but in accordance with previous molecu-
lar results (Treutlein and Wink, 2002; Hill et al.,
2003; Bogler and Francisco-Ortega, 2004; Chaw
et al., 2005). These results reinforce the conclu-
sion that Lepidozamia and Encephalartos shared
a common ancestry in Gondwana (200-135
MYA) and separated from each other before
Africa and Australia were isolated (Bogler and
Francisco-Ortega, 2004). As noted by Chaw et
al. (2005), the relationship between these two
widely disjunct genera is enigmatic; however, un-
like some species of Cycas (Dehgan and Yuen,
1983), no species of Lepidozamia or Encephalar-
tos possess seeds with special adaptations that
enable dispersal for long distances, especially on
the continental scale. As with the allied Macroza-
mia (Snow and Walter, 2007), all extant species
of Lepidozamia and Encephalartos had large and
heavy seeds that are locally or barely dispersed.
These essentially localized distributions indicate
dispersal limited distribution (Primack and Miao,
1992) not conducive to long range colonization.
Bowenia (endemic to Australia) and Stangeria
(endemic to Africa) were classified in the family



100

100

Phylogeny of two cycad families

E.manikensis
E.hildebrandtii
E.altensteinii
E.trispinosus
E.longifolius

E.lehmannii

E.friderici-guilielmi
E.ferox

E.villosus

50 |: E.paucidentatus
E.natalensis

_|: E.arenarius
51 E.barteri

L.peroffskyana
{ Encephalartoideae
100 L.hopei

100
494: M.macdonnellii
M.riedlei
M.secunda
M.platyrhachis
100 ’
M.moorei
100 M.reducta
100 M.miquelii
M.fawcettii
M.pauli-guilielmi
100 _|: M.communis
100 M.spiralis
— D.edule
100 00— D.spinulosum |
— B.serrulata
) Bowenioideae
100 L—— B.spectabilis
Mi.calocoma
100 _|: Z furfuracea Zamioideae
100 Z fischeri
S.eriopus ]Stangerioideae
CZ kuesteriana
100
CZ.plumosa
100
CZ.norstogii
100 Zamioideae
CZ.microstrobila
100
100 _|: CZ.hildae
100 CZ mexicana
C.media
100

_|: C.rewoluta
93 C.wadei

Fig. 1. The consensus tree inferred from 74 most parsimonious trees was shown. Branches corresponding to
partitions reproduced in less than 50% trees were collapsed. The percentage of parsimonious trees in which
the associated taxa clustered together were shown next to the branches.
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Fig. 2. Neighbor-Joining tree produced by analysis of trnS-trnG sequence data from Zamiaceae and Stangeri-
aceae families. The optimal tree with the sum of branch length=0.81275044 was shown. The percentage of

replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) were
shown next to the branches (> 50%).
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Stangeriaceae by Stevenson (1992), albeit in sep-
arate subfamilies. However, most previous stud-
ies have implied that Bowenia and Stangeria
were not closely related, and did not support the
family Stangeriaceae, and most molecular based
phylogenetic studies have concluded that Stange-
ria and Zamia were sister taxa (Rai ef al., 2003;
Bogler and Francisco-Ortega, 2004; Chaw et al.,
2005), rather than Stangeria and Ceratozamia as
found in the current study. Previously it was re-
ported that the chromosome numbers of Stange-
ria and Ceratozamia are both 2n=16, whereas
for Bowenia it is 2n=18; and Stangeria and Cer-
atozamia have similar karyotypes (Kokubugata et
al., 2000, 2001, 2004). Furthermore, the flores-
cence in situ hybridization using 45S and 58S ri-
bosomal (rDNA) probes elucidated that Stange-
ria (S. eriopus) and Ceratozamia (C. hildae, C.
kuesteriana, C. mexicana and C. norstogii) had
similar distribution patterns of 45S and 5S rDNA
sites on the somatic chromosome complements,
with the conclusion that Stangeria could be clos-
er to Ceratozamia than the other cycad genera
(Kokubugata and Kondo, 1998; Kokubugata et
al., 2002, 2004). The present molecular study
supports the previous cytotaxonomic hypothesis.
Data from the trnS-trnG noncoding region of
chloroplast DNA appears to be highly informa-
tive for determining relationship hypotheses in
the Cycadales, which largely colloborate other
molecular studies. On the other hand, there is not
enough data to explain intrageneric phylogenies
in each genus, and thus further taxon sampling
and analyses based on the other sequences are re-
quired, particularly for the New World genera
such as Ceratozamia and Zamia. Ultimately a
rigorous classification for the Cycadales should
be based on a dataset that incorporates informa-
tion from a range of molecular studies, together
with morphological characters and that acknowl-
edges aspects of the pollination biology and dis-
persal abilities of these plants. Ultimately a rigor-
ous classification for the Cycadales should be
based on a dataset that incorporates information
from a range of molecular studies, together with
morphological characters and that acknowledges

aspects of the pollination biology and dispersal
abilities of these plants. In spite of their lineage,
a general consensus is that many of the extant
species of cycads are relatively recent in deriva-
tion, possibly radiating since the Pleistocene
(Treutlin and Wink, 2002; Vovides et al., 2007),
albeit with a set of biological characteristics of
putatively ancient origins. Their dependence on
insect pollinators (usually in dependent obligate
mutualisms (cf. Terry et al., 2005)) and limited
ability to disperse due to an apparent loss of ded-
icated dispersal agents (Snow and Walter, 2007)
all indicate that the extant cycads have limited
options for long range colonization. Molecular
and morphological differences between the ex-
tant genera of cycads (particularly those that are
sister taxa such as Encephalartos and Lepidoza-
mia) are likely to have arisen prior to their having
been separated by continental separation events,
such as the splitting up of Gondwana.
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