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Morphometric identification of human molars using machine learning

Wataru Morita1* and Naoki Morimoto2

1 Department of Anthropology, National Museum of Nature and Science,  
4–1–1 Amakubo, Tsukuba City, Ibaraki 305–0005, Japan

2 Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science,  
Kyoto University, Kitashirakawa Oiwakecho, Sakyo, Kyoto City, Kyoto 606–8502, Japan

*E-mail address: wmorita@kahaku.go.jp
*corresponding author.

Address: 4–1–1 Amakubo, Tsukuba City, Ibaraki 305–0005, Japan
Phone: ＋81–(0)29–853–8184
FAX: ＋81–(0)29–853–8998

Abstract Identifying individual tooth (tooth class and type within it) is a fundamental skill for 
anthropologists. It is always required for basic description in the fieldwork. Besides, it is vital to 
identify dental specimens in the studies to infer phylogenetic relationships and species classifica-
tion. Likewise, the identification of teeth is highly relevant in the primary education of dentistry. 
However, the characteristics described in standard textbooks do not necessarily apply to all teeth 
due to broad inter-individual variation of morphology. While the qualitative description of dental 
traits is useful, it better be constructed on the ground of quantitative analysis. Here, we introduced 
a method that combines the technique of geometric morphometrics and machine learning. Specifi-
cally, we used the method of morphometric mapping to quantify and visualize three-dimensional 
tooth crown morphology of human upper molars and to extract multiple morphological parameters 
which can then be submitted to machine learning. Results show that the classification accuracy is 
maximized when using the x component of vertex normal toward mesio-distal direction with a 
small filter size for noise reduction. The mesio-distal gradient of tooth crown morphology is highly 
relevant for molar type identification with algorithmic processing, which is underpinned by the 
morphogenetic process of tooth formation.
KeyWords: Morphometric mapping, Artificial intelligence, Data mining, EDJ

Introduction

Most mammals, including modern humans, 
generally have three molar teeth. The pattern of 
inter-molar variation, that is, metameric variation 
of molars, varies among species. To explain 
metameric variation systematically, the inhibi-
tory cascade model (ICM) was proposed (Kava-
nagh et al., 2007). The relationship of relative 
molar size between M1, M2, and M3 (first, sec-
ond, and third molars) was formulated from 
experimental data of murine rodents and corre-
lated with dietary habits (Polly, 2007). Although 

it has been pointed out that this model does not 
always adequately describe metameric variation 
in some mammalian clades (Bernal et al., 2013; 
Roseman and Delezene, 2019) and other indices 
such as the molar module component (MMC) 
have been proposed (Hlusko et al., 2016), the 
relationship between molar size and shape pro-
vides relevant information on dentition formation 
during development. In actual, the ICM is also 
widely used to explore dietary adaptation and 
phylogenetic relationships in primates (Bermú-
dez De Castro et al., 2021; Carter and Worthing-
ton, 2016; Schroer and Wood, 2015). In the evo-
lution of the human lineage, Evans et al. (2016) 
revealed that there is a difference in reversal © 2021 National Museum of Nature and Science
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position of dental reduction between australo-
piths and genus Homo, indicating that inter-
molar variation has been evolutionarily changed 
in the human lineage.

The identification of individual tooth is a fun-
damental skill for all researchers whose work 
involves dentition. In particular, it is vital to 
identify dental specimens (tooth class and type 
within it) in the studies of evolutionary biology 
to infer phylogenetic relationships and the classi-
fication of species. Similarly, the identification of 
teeth is highly relevant to the primary education 
of dentistry (Bailey and Hublin, 2007; Hillson, 
1996, 2005; Nelson and Wheeler, 2015). The 
characteristics described in standard textbooks, 
however, do not necessarily apply to all teeth due 
to considerable inter-individual variation of mor-
phology. Although the qualitative description of 
dental traits is practical and meaningful, it should 
be corroborated quantitatively.

In this study, we use the morphometric map-
ping method, which can quantitatively evaluate 
the 3D morphology (Morita et al., 2016a). The 
morphometric mapping method unfolds a 3D 
surface model into a 2D image (morphometric 
“map”) using several morphometric variables. 
Tooth identification using the morphometric 
mapping method also contributes to a conceptual 
appreciation of tooth characteristics and essential 
points for identification. The morphological 
parameters used in morphological mapping, such 
as sharpness, the direction of the surface, and rel-
ative height, may help us understand which mor-
phological features we should focus on for clas-
sification.

Since the 2000s, the rise of artificial intelli-
gence, including machine learning and deep 
learning, has accelerated automated pattern rec-
ognition and classification (Ahmed et al., 2019; 
Emmert-Streib et al., 2020; Gezawa et al., 2020; 
Ray, 2019). Such human-free algorithms provide 
us with objective classification of 3D shapes and 
make us recognize crucial characters for tooth 
identification in a reflective manner (Monson et 
al., 2018). Combined with morphometrics, there 
are some attempts to optimize parameters by 

machine learning for the purpose of variable 
selection (Morita et al., 2020a; Plyusnin et al., 
2008). In this study, we combine morphometric 
mapping with artificial intelligence to classify 
human maxillary molars.

Materials and Methods

The materials consist of 176 human upper 
molars (Table 1). Sex was undetermined for most 
of the sample, which was a mixture of popula-
tions from different periods and regions (from 
Neolithic, medieval, early modern, and modern 
populations in the Japanese archipelago). Teeth 
that had completed crown formation and main-
tained unworn enamel–dentine junction (EDJ) 
were used. The EDJ was used to elude the effects 
of dental attrition on parameterization and classi-
fication of molar teeth. A tooth crown consists of 
two tissue layers: enamel and dentine, whose 
boundary can be observed as EDJ. Due to the 
high correlation between EDJ and the shape of 
the outer enamel surface of teeth, EDJ has been 
extensively studied in dental anthropology 
(Blinkhorn et al., 2021; Morita et al., 2014; 
Skinner et al., 2009). Volume reconstructions of 
human molars were constructed from various 
μCT scans acquired with the following scanners: 
the ScanXmateA080S, Comscantecno, Japan 
(housed at Kyoto University, and scans made at 
voxel resolutions of 31–32 μm); the ELE SCAN, 
Nittetsu Elex, Japan (housed at Niigata Univer-
sity, and scans made at voxel resolutions of 
30 μm). The CT image stacks were filtered with a 
median filter to facilitate tissue segmentation, 
and triangular mesh models of the 3D EDJ sur-
face were reconstructed using the software Amira 
4.1 (Mercury Systems). We analyzed both right 
and left teeth to maximize sample size. Eventu-

Table 1. Sample structure

Molar type N

UM1  62
UM2  54
UM3  60

Total 176
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ally, all specimens were considered as left by 
mirroring the teeth from the right side.

Prior to the morphometric analyses, each of 
the EDJ surface models was aligned as follows. 
First, the intercuspal ridges among the four main 
cusp tips (para-cone, protocone, metacone, and 
hypocone) of each tooth were manually digitized 
on the surface model, and the least-squares plane 
of the occlusal fovea was computed. In speci-
mens with an undeveloped or absent hypocone 
(i.e. most of UM3s), the distolingual edge of the 
occlusal fovea was traced. Each molar specimen 
was then positioned with the least-squares plane 
of the occlusal fovea in parallel with the xy-plane 
of the Cartesian coordinate system and centered 
using the centroid of the occlusal fovea. Second, 
we digitized landmarks along the cervical line to 
calculate the centroid of the cervix. We then 
defined a plane parallel to the occlusal plane con-
taining the centroid of the cervical line as the 
cervical plane. The molar was placed so that the 
cervical plane was paralleled to xy-plane. Each 
molar was centered on matching with the cen-
troid of this Cartesian coordinate system, fol-
lowed by shifting-down of the 3D model along 
z-axis up to upper 80% of an entire tooth crown 
(from the highest point to the cervical plane) 
being above xy-plane.

To parameterize three-dimensional EDJ, each 
surface model was sectioned by 300 vertical 
planes radiating from the z-axis, perpendicular to 
the occlusal fovea (L＝300). Each vertical cross-
section had 300 points sampled along the outline 
of the EDJ surface, running from the z-axis to the 
endpoint at z＝0 (K＝300). For these equidistant 
300 sampled points along the 300 equiangular 
sections, the following morphometric parameters 
were recorded: surface curvature (c), height from 
the cervical plane (h), horizontal distance from 
the centroid, i.e., radius (r), and vertex normal 
which represents the direction of the local area in 
3D as a unit vector (Nxyz). The data sets of each 
molar consist of K×L matrices of each four 
parameters of six variables (c, h, r, and Nxyz). 
Note that the surface curvature c is calculated 
three-dimensionally but sampled along the cross-

sections.
These morphometric variables were mapped 

on a polar coordinate system (d, θ), where d 
denotes the standardized position along each 
cross-sectional outline (d＝0→1: centroid→ 
cervix), and θ denotes the anatomical direction 
(θ＝0°→360°: buccal→mesial→lingual→distal
→buccal). The EDJ morphology could thus be 
visualized as 2D image M (d, θ). Those morpho-
metric maps are shown as false-color maps. Each 
component of vertex normal vector (Nx, Ny, Nz) 
is assigned to three sets of an RGB color value, 
respectively, and represented as a single map. 
For facilitating visual inspection, morphometric 
maps are reconstructed to represent an outline of 
the tooth crown by padding the background 
depending on relative length at the cervix. The 
scaling effects on the variables c, h, and r were 
normalized by centroid size (CS, the square root 
of the summed squared distances calculated from 
height and radius). This approach is analogous to 
standardization by centroid size in geometric 
morphometrics (Bookstein, 1991). Each row of 
the K×L matrix for each specimen was sequen-
tially weighted by a concentrically subdivided 
area with radius one and constant internal angle 
(＝1/L) that was equidistantly sectioned (＝1/K). 
Each specimen was preoriented according to the 
anatomical axis. Then, 2D-Fourier transforms 
F(Mi) of all Mi (i＝1, 2, . . ., n) were calculated 
(M had natural periodicity in θ). These K×L sets 
of Fourier coefficients of each specimen’s 3D 
EDJ surface model are represented as a point in 
the multidimensional Fourier space. The optimal 
fitting for all the maps around the z-axis was 
achieved by iteratively minimizing inter-speci-
men distance in Fourier space through rotation 
around θ. After all the specimens were aligned 
by best-fit, we carried out machine learning to 
select the combination of morphometric parame-
ters and the number of set of Fourier coefficients 
(i.e., the size of low-pass filtering for noise 
reduction in Fourier space) to reduce the number 
of variables relative to the number of specimens 
and to achieve molar type identification.

Machine learning was performed to maximize 
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the classification accuracy of three types of 
human upper molars (UM1, UM2, and UM3). 
We executed multiclass error-correcting output 
codes (ECOC) model (Fürnkranz, 2002), using 
five types of leaners: decision tree, linear classifi-
cation, discriminant analysis, support vector 
machine (SVM), and k-nearest neighbors (num-
ber of neighbors was set to 1, 3, and 5 with 
neighborhood defined by Euclidean distance). 
The 10-fold cross-validation was performed as a 
measure of model accuracy with a total of seven 
classification models described above. We com-
pared 12 combinations of morphometric vari-
ables by adjusting the size of low-pass filtering 
from 1 to 50: c, h, r, Nx, Ny, Nz, chr, hr, 
chrNxyz, Nxyz, Nxy, Nxyzr.

After the data mining procedure using 
machine learning, we conducted between-group 

principal components analysis (bgPCA). Mor-
phometric maps were reconstructed by trans-
forming an arbitrary point along the bgPC axis 
into its corresponding sets of Fourier coefficients 
for use in reconstructing morphometric maps by 
an inverse Fourier transformation. All calcula-
tions were performed in MATLAB 9.10 (Math-
Works, USA).

Results

We applied variable selection algorithms by 
utilizing machine learning to pick up the combi-
nation of morphometric parameters and the size 
of low-pass filtering to optimize the classification 
of three types of human upper molars. To explore 
a relatively broad range of morphological proper-
ties, we compared twelve types of map combina-

Fig. 1. Results of machine learning of seven types of probabilistic classification models for 12 map variable com-
binations. (A) c: surface curvature; (B) h: height; (C) r: radius; (D) Nx: x component of vertex normal; (E) Ny: 
y component of vertex normal; (F) Nz: z component of vertex normal; (G) chr: surface curvature, height, and 
radius; (H) hr: height and radius; (I) chrNxyz: surface curavutre, height, radius, and vertex normal; (J) Nxyz: 
vertex normal; (K) Nxy: two elements of vertex normal; (L) Nxyzr: vertex normal and radius. Size of low-
pass filter is equal to the number of sets of Fourier coefficients for the analysis. SVM, support vector machine. 
KNear, k-nearest neighbor (number of neighbors was set to 1, 3, and 5).
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tions by adjusting the size of low-pass filtering in 
seven different classification models (five basic 
learners: decision tree, linear, discriminant, sup-
port vector machine, and k-nearest neighbor). 
The cross-validation was executed to calculate 
the classification accuracy of each model with 
mean classification loss, where data was ran-
domly partitioned into ten subsets, and one sub-
set was used to validate the model trained using 
the remaining subsets. Support vector machine 
(SVM) was consistently a better classifier for 
human molar identification (Fig. 1). On the con-
trary, decision tree and discriminant analysis get 
worse as the filter size gets larger. K-nearest 
neighbor models (K＝1, 3, and 5) demonstrated 
a similar tendency of classification loss in differ-
ent data sets. Linear classification, as with SVM, 
results in low classification loss stably in most 
cases except for r-M, which may be dependent 
on the data structure. The top 20 models deriving 
from 600 data sets (12 combinations of morpho-
metric variables by 50 sizes of low-pass filtering; 
SI Tables 1–12) are shown in Table 2. The mor-

phometric parameter of these top 20 models was 
the x component of vertex normal, whose accura-
cies (accuracy＝1–averaging cross-validation 
classification loss) are about 95%. Among them, 
between-group principal component analysis 
(bgPCA) was performed using the best set of 
variables (x component of vertex normal with fil-
ter size equal to eight) to visualize shape varia-
tion.

Fig. 2 shows UM shape variation in a bgPC 
space and corresponding patterns of shape varia-
tion along bgPC1 and bgPC2, which comprise 
91.0% and 9.0% of the total variation, respec-
tively. Although morphometric parameters used 
for multivariate analysis differ, the resulting plot 
is largely consistent with Morita et al. (2016a).

Along PC1, there is a continuous transition 
from UM1, UM2, and UM3. Interpretation of the 
shape change in Nx-M is a delicate matter, but 
bgPC1 captures the complexity of the occlusal 
surface. Slopes within an occlusal table are well-
separated, especially distal triangular fovea by an 
oblique ridge in higher bgPC1, whereas lower 
PC1 has a simple occlusal fovea. The bgPC2 sep-
arates UM2 from UM1 and UM3. Shape varia-
tion of bgPC2 is associated with the relative 
expansion along the buccolingual axis, where 
higher bgPC2 shows a relatively larger buccal 
area; on the other hand, dental structures are 
equally distributed in lower bgPC2.

The distribution of adjacent molar types (i.e., 
UM1–UM2 and UM2–UM3) are overlapped in 
morphospace. In Fig. 2B, the 3D surface models 
and corresponding Nx-Ms demonstrate shape 
variation within the molar type with both the typ-
ical morphology of each tooth type located 
almost at the center of the variation of each 
molar type and the atypical specimen located in 
the region of adjacent molar types. Each of these 
outliers has a morphology that more closely 
resembles the typical shape of the adjacent tooth 
type than the typical shape of the tooth type to 
which it originally belongs.

Fig. 3 visualizes the metameric variation of 
human upper molars using several morphometric 
parameters. Since the metameric shape change 

Table 2. Top twenty probabilistic classification 
models in machine learning for human upper 
molars

Rank
Size of 

low-pass 
filter

Classification 
loss

Combination 
of maps Learner

1 8 0.045454545 Nx SVM
2 36 0.051136364 Nx Linear
3 6 0.051136364 Nx SVM
4 9 0.051136364 Nx SVM
5 10 0.051136364 Nx SVM
6 13 0.051136364 Nx SVM
7 15 0.051136364 Nx SVM
8 30 0.051136364 Nx SVM
9 31 0.051136364 Nx SVM

10 34 0.051136364 Nx SVM
11 37 0.051136364 Nx SVM
12 42 0.051136364 Nx SVM
13 50 0.051136364 Nx SVM
14 22 0.056818182 Nx Linear
15 23 0.056818182 Nx Linear
16 12 0.056818182 Nx SVM
17 17 0.056818182 Nx SVM
18 18 0.056818182 Nx SVM
19 21 0.056818182 Nx SVM
20 25 0.056818182 Nx SVM

Nx, x component of vertex normal. SVM, Support 
vector machine; Linear, Linear classification.
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Fig. 2. Metameric variation in human UMs. (A) Molar shape variation in between-group (bg) PC space (along 
bgPC1 and bgPC2) using the best classifier [x component of vertex normal (Nx) with first eight sets of Fourier 
coefficients]. Symbols used in the bgPC graph: red open circles: UM1, blue asterisks: UM2, green open stars: 
UM3. Major patterns of variation are represented by morphometric maps (Nx-M, FT 8) visualising ± 1 s.d. 
along each bgPC axis: bgPC1: (-) round and simple occlusal surface/ (+) mesiodistally elongated and highly 
patched relief of occlusal surface. bgPC2: (-) enlarged buccal area in occlusal surface/ (+) compact crown 
structure. (B) Shape variation depicted on bgPC1 and bgPC2. 3D model and corresponding x component of 
vertex normal map (left: outlined at cervix, right: circular representation) of pointed specimens are provided to 
demonstrate shape variation. MTF: mesial triangular fovea, DTF: distal triangular fovea, OR: oblique ridge. b: 
buccal, m: mesial, l: lingual, d: distal.
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largely runs parallel to the bgPC1 axis, morpho-
logical transition proceeds with gradual simplifi-
cation of occlusal features from mesial to distal. 
The most notable shape change is hypocone 
reduction.

Discussion

We examined the accuracy of identification in 
human upper molars using six univariate maps 
consisting of surface curvature, height, radius, 
and each of three components of the normal vec-
tor, plus six combinations of several variables 
among them (Fig. 1). For most morphometric 
parameters, the combination with others does not 
stunningly increase the classification accuracy. 
However, in the case of r-M, the classification 
loss was decreased by combining with other 
maps, which would rather stem from the offset 
by the contribution of other parameters. Thus, a 
simple increase in the amount of information 
does not necessarily have a positive effect on 
molar type identification, nor does it mean that 
there is a correlation between them. Similarly, a 
larger filter size in low-pass filtering does not 
necessarily make the classification accuracy bet-
ter. Instead, it could increase classification loss 

depending on the learner used in the algorithm of 
machine learning. Considering the possibility 
that noise may be included as the filter size 
increases, as for the filter size in the low-pass fil-
tering process, it seems appropriate to set a value 
between 10 and 20 as the size of low-pass filter-
ing to identify molar types. In this study, 
machine learning was used for the identification 
of tooth types. However, the application of artifi-
cial intelligence, such as image classification 
technology based on deep learning, can also be 
widely applicable to fossil classification and/or 
phylogenetic estimation (Yi et al., 2021).

We used only the x component of vertex nor-
mal (Nx) which gave the best scores in classifica-
tion accuracy to represent molar shape variation 
in morphospace, and they were different from 
those in Morita et al. (2016b), where a set of 
variables consisting of surface curvature, height, 
and radius was exploited. Nevertheless, the 
topology of molar type distribution in bgPC 
space is almost the same, making the results 
more robust. Furthermore, the bgPC1 captures a 
gradual shape change from UM1 to UM3, which 
is related to the shape change from a complex 
configuration to a simple one in the occlusal 
table. This major tendency of metameric varia-

Fig. 3. Average morphometric maps (six univariate morphometric parameters and two combinations of vertex 
normal) of UM1, UM2 and UM3 (from top to bottom) in humans. All maps are outlined at the cervix. b: buc-
cal, m: mesial, l: lingual, d: distal.
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tion is also shared across hominoids (Morita et 
al., 2020b). Along the bgPC2 axis, UM2, which 
shows markedly reduced hypocone relative to the 
other earlier-forming three cusps, is distin-
guished from UM1 in having hypocone of suffi-
cient size and UM3 whose cusps are degraded on 
the whole. This prominent hypocone reduction is 
unique to humans (Morita et al., 2020b). Since 
these shape changes have also been confirmed as 
valuable features for differentiating human molar 
types, it may be beneficial for students in den-
tistry to learn how to identify teeth by taking the 
similarities and differences between the teeth of 
hominoids, such as chimpanzees, gorillas, and 
orangutans into consideration.

It is also worth noting that Nx is the most use-
ful for molar identification. The accuracy of clas-
sification by machine learning was shown to be 
close to at most 95% (Table 2). The x-axis in the 
present coordinate system corresponds to the 
anatomical mesiodistal axis and is thought to 
sensitively project shape changes in the crown 
structure along the mesiodistal axis. In conven-
tional dental metric analyses, it is impossible to 
extract and analyze the single morphometric 
parameter that reflects the mesiodistal axis. 
Unlike other geometric morphometric methods, 
most of which use coordinates for analysis, the 
morphometric mapping method has obvious 
merit that morphological attributes derived from 
the object can be decomposed into several mor-
phometric parameters to quantify and visualize 
three-dimensional shapes.

Thus, the mesio-distal gradient between 
molars was proven to be essential for molar type 
identification in terms of algorithmic processing. 
While, this mesio-distal gradient among dentition 
has been explained by the patterning cascade 
model as the difference between cusps in a single 
crown (Jernvall and Jung, 2000) and by the 
inhibitory cascade model as the difference 
between molars (Kavanagh et al., 2007). In both 
models, the same unit is repeatedly formed from 
mesial to distal by the interaction between acti-
vator and inhibitor, and morphological reduction 
could occur at the distal part due to a gradual 

decline of patterning potency. When it comes to 
morphological comparison between human 
molar types, it is often pointed out that UM1 has 
a stable and fixed morphology. At the same time, 
UM3 shows more considerable shape variation 
and is more atypical. The perspective under-
pinned by the developmental models that UM1 
exhibits a more negligible difference in morpho-
logical complexity within the tooth crown while 
UM3 has a larger gradation from mesial to distal 
in crown structure is also important as a criterion 
for the identification of human molars.

Overall, it appears machine learning is a pow-
erful tool that can accurately identify tooth types 
based on various morphometric variables and 
infer an underlying developmental pattern. Com-
bining artificial intelligence with morphometric 
mapping showed a potential of automated vari-
able selection for precise tooth identification and 
should be applicable to detect characteristics in 
developmental process or test evolutionary 
hypotheses and taxonomic discrimination of fos-
sils for future studies (Monson et al., 2018; Yi et 
al., 2021).
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