939. A RECORD OF PSEUDOPHYLLITES INDRA (LYTOCERATINA, TETRAGONITIDAE) FROM THE UPPER CRETACEOUS OF HOKKAIDO AND SAKHALIN*

YASUNARI SHIGETA
Geological Institute, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113

Abstract. A tetragonitid ammonite, Pseudophyllites indra (Forbes) is described based on material from the Orannai Formation in the Soya area of northern Hokkaido and from the Krasnoyarka Formation in the Naiba area of south Sakhalin. P. indra, occurring in the Schluterella kawadai Subzone of the Metaplacenticeras subllistriatum Zone, which corresponds to the upper Campanian, has a nearly circular initial chamber in median section, a subellipsoid caecum with weakly constricted base and a ventrally located siphuncle. In various areas of the North Pacific region, the present species first appeared almost synchronously in the upper Campanian. From Santonian to early Campanian times, P. indra was distributed in the Indian region. This evidence shows that this species extended its geographical distribution from the Indian region to the North Pacific region in late Campanian time.

Key words. Pseudophyllites, upper Campanian, Soya, Naiba, ontogeny, paleobiogeography.

Introduction

The genus Pseudophyllites Kossmat, 1895 of the family Tetragonitidae is considered to be one of the offshoots from Tetragonites (Kennedy and Klinger, 1977). Species of Pseudophyllites are known to occur from the Santonian to Maastrichtian worldwide (Collignon, 1956). In Hokkaido several fragmentary specimens of Pseudophyllites were described as P. indra (Forbes, 1846) and P. cf. teres (Van Hoeven, 1920) by Matsumoto and Miyachi (1984) from the upper Campanian of the Soya area, but further work based on more sufficient material is required to discuss the taxonomy, biostratigraphy and paleobiogeography of this genus.

Recently, I have discovered many well preserved specimens referable to P. indra from the upper Campanian of the Soya area of Hokkaido and from the Naiba (=Naibuti) area of Sakhalin, as described below.

Paleontological description

Order Ammonoidea Zittel, 1884
Suborder Lytoceratina Hyatt, 1889
Superfamily Tetragonitaceae Hyatt, 1900
Family Tetragonitidae Hyatt, 1900
Genus Pseudophyllites Kossmat, 1895

Type species.—Ammonites indra Forbes, 1846 by original designation.

Diagnosis.—Very involute tetragonitids with a high whorl expansion rate and a small umbilicus. Early whorls rounded in cross section, later whorls becoming elliptical, with a convex venter, somewhat flattened flanks and a steeply sloping umbilical wall. Shell surface ornamented by fine striae, inflected

*Received March 2, 1992; accepted May 18, 1992
foward and passing radially across venter. Constriction absent. Suture very finely divided with asymmetrically trifid or asymmetrically bifid major saddles having sub-phylloid terminations.

Pseudophyllites indra (Forbes, 1846)

Figures 1-4

Ammonites indra Forbes, 1846, p. 105, pl. 11, fig. 7; Stoliczka, 1865, p. 112, pl. 58, fig. 2; Whiteaves, 1879, p. 105, pl. 13, fig. 2.

Pseudophyllites indra (Forbes); Kossmat, 1895, p. 137, pl. 16, figs. 6-9, pl. 17, figs. 6-7, pl. 18, fig. 3; Whiteaves, 1903, p. 331; Woods, 1906, p. 334, pl. 41, fig. 6; Spath, 1922, p. 119; Collignon, 1938, p. 24, text-fig. E; Usher, 1952, p. 57, pl. 3, figs. 2-13; pl. 31, figs. 15-17; Collignon, 1956, p. 90; Matsumoto, 1959, p. 134, Jones, 1963, p. 25, pl. 7, figs. 6-7, pl. 8, pl. 29, figs. 7-12, text-fig. 10; Collignon, 1969, p. 12, pl. 516, fig. 2032; Kennedy and Klinger, 1977, p. 182, text-figs. 19-22; Matsumoto and Miyauichi, 1984, p. 54, pl. 21, fig. 5; Henderson and McNamara 1985, p. 50, pl. 2, figs. 7, 8, pl. 3, figs. 4, 5, text-fig. 5a, d.

Tetragonites glabrus (Jimbo); Shigeta, 1989, p. 334, text-fig. 12(3).

Type.—The holotype is the specimen originally figured by Forbes (1846, pl. 11, fig. 7), BMNH C51068, from the Valdayur Group near Pondicherry, southern India.

Material.—In addition to the specimen (MNH. 231) described by Matsumoto and Miyauichi (1984, pl. 21, fig. 5) from the Soya Harbor, 14 specimens collected from the upper part of the Orannai Formation in the Soya area of northern Hokkaido and three specimens from the middle part of the Krasnoyarka Formation in the Naiba area of south Sakhalin are used in the following description: UMMUT MM18991–18997 from fishery harbor of Soya (upper Campanian); UMMUT MM18998 from fishery harbor of Kiyohama-I (upper Campanian); UMMUT MM18999–19002 from new fishery harbor of Kiyohama-II (upper Campanian); UMMUT MM19003 and MM19004 from old fishery harbor of Kiyohama-II (upper Campanian); UMMUT MM19005 from locality NB3031 (= N100 of Matsumoto’s locality, upper Campanian); UMMUT MM19006 and MM19007 from the middle course of the Krasnoyarka River (NB3023P) (upper Campanian). All the specimens from the Soya area and two specimens from the Naiba area were obtained from floated calcareous nodules. For details of their localities and ages see Matsumoto and Miyauichi (1984) and Matsumoto (1942).

All the specimens utilized herein are deposited at the University Museum, University of Tokyo (UMUT). The specimen (MNH. 231) described by Matsumoto and Miyauichi (1984) is now kept at UMMUT (UMUT MM19008) by courtesy of Mr. T. Miyauichi.

Dimensions.

<table>
<thead>
<tr>
<th>Shell diameter (D) (mm)</th>
<th>Breadth of umbilicus (U) (mm)</th>
<th>Whorl height (H) (mm)</th>
<th>Whorl breadth (B) (mm)</th>
<th>U/D</th>
<th>B/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNH. 231 (MM19008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM18991</td>
<td>185.0</td>
<td>18.0</td>
<td>61.0</td>
<td>50.0</td>
<td>0.16</td>
</tr>
<tr>
<td>MM18998</td>
<td>40.6</td>
<td>9.0</td>
<td>19.7</td>
<td>19.8</td>
<td>0.22</td>
</tr>
<tr>
<td>MM18999</td>
<td>33.0</td>
<td>7.5</td>
<td>14.7</td>
<td>15.7</td>
<td>0.23</td>
</tr>
<tr>
<td>MM18994</td>
<td>28.4</td>
<td>6.3</td>
<td>14.3</td>
<td>14.5</td>
<td>0.22</td>
</tr>
<tr>
<td>MM18995</td>
<td>23.8</td>
<td>5.7</td>
<td>11.7</td>
<td>12.0</td>
<td>0.23</td>
</tr>
<tr>
<td>MM19003</td>
<td>21.3</td>
<td>5.2</td>
<td>9.8</td>
<td>10.0</td>
<td>0.24</td>
</tr>
<tr>
<td>MM19001</td>
<td>17.2</td>
<td>4.4</td>
<td>8.1</td>
<td>8.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Description.

Early internal shell structure (Figure 1)

The initial chamber is nearly circular in median section. The caecum is subelliptical in lateral view with a weakly constricted base, and its adapical end connects with the initial chamber wall by a short, adorally concave prosiphon. The siphuncle occupies a central position near the prospectum and then immediately shifts toward the venter within the second chamber. Thereafter it keeps a ventral position. Initial chamber size, ammonite size and its spiral length in the specimen UMMUT MM18996 in median section are 712 μm, 1,550 μm, and 336° respectively.
Figure 1. Scanning electron micrographs of the early internal shell structure of *Pseudophyllites indra* (Forbes) in median section. Scale bar in 1, 500 \(\mu m \). Scale bar in 2, 100 \(\mu m \). UMUT MM18996, the upper Campanian, fishery harbor of Soya.

Figure 2. External suture at a whorl height of 6.2 mm of *Pseudophyllites indra* (Forbes). UMUT MM18994, the upper Campanian, fishery harbor of Soya.

Early to middle whorls (10–60 mm in diameter) (Figures 2 and 3)

The shell is very involute, rapidly expanding, with a depressed whorl section. The umbilicus is narrow and deep, with an abruptly rounded shoulder. The shell surface is ornamented by fine striae which arise across the umbilical seam, sweep slightly backwards across the umbilical wall, flex backwards over the shoulder, and pass across the flanks in a prorsiradiate direction. The striae sweep backwards across the ventrolater-
Figure 4. *Pseudophyllites indra* (Forbes), ×0.7. UMIT MM18991, the upper Campanian, fishery harbor of Soya. 1: lateral view, 2: ventral view.

al shoulder and cross the venter with a broad, faint, concave ventral sinus.

The suture (Figure 2) is highly subdivided, with a large irregularly trifid first lateral saddle (E/L), a smaller bifid second lateral saddle (L/U₂), a deeply incised bifid lateral lobe (L), and a suspensive lobe with a large bifid first auxiliary saddle.

Later whorls (over 60 mm in diameter) (Figure 4)

The largest specimen in the present material, 185 mm in diameter, lacks a majority (5/6) of the body chamber. The shell is very involute, with compressed whorls and a high
whorl expansion rate. The umbilicus is small and deep, with a sloping wall and abruptly rounded shoulder. It is ornamented by fine and dense striae which show a gently backward curve on the ventrolateral part.

The suture is poorly visible, but consists of numerous deeply incised elements, with subphyllloid terminals of foliolenes.

Comparison.—In the juvenile stage *P. indra* most closely resembles *Tetragonites glabrus*, a Turonian to lower Campanian species known from Hokkaido, Sakhalin, Alaska, California and South Africa in having a subellipsoid caecum with weakly constricted base, ventrally located siphuncle, a high whorl expansion rate and a small umbilicus, but is distinguished from *T. glabrus* in having a rounded umbilical shoulder and weakly adorally concave sinuous aperture on venter. The specimens illustrated as *T. glabrus* by Shigeta (1989, UMUT MM18636-16, 29, 35, 37, 47, 51, 58) from the upper Campanian of the Soya area are regarded as a juvenile specimen of *P. indra*.

Occurrence.—*P. indra* is a cosmopolitan species known from the upper Santonian to lower Maastrichtian in South Africa, southern India and western Australia, and from the upper Campanian to lower Maastrichtian in southern Alaska and Vancouver Island. In Hokkaido and Sakhalin, this species occurs in the *Schlueterella kawadai* Subzone of the *Metaplacenticeras subtilistriatum* Zone, which is equivalent to the upper Campanian.

Stratigraphical significance of the occurrence

P. indra occurs in the *Metaplacenticeras pacificum* Zone and the *Pachydiscus suciaensis* Zone in British Columbia (Usher, 1952), in the *M. pacificum* Zone in California (Matsumoto, 1960), in the *Pachydiscus kamishakensis* Zone in Alaska (Jones, 1963), and the *M. subtilistriatum* Zone in Hokkaido and Sakhalin (Matsumoto, 1984; this study). According to the zonal correlation of megafossils in the Northern Pacific region, this species is restricted to an interval from the upper Campanian to the lowest Maastrichtian (Muller and Jeletzky, 1970; Ward, 1978; Matsumoto, 1984). The upper limit of the occurrence of this species in Hokkaido and Sakhalin has not yet been sufficiently elucidated because in many areas megafossils are rather rare in the uppermost Campanian to the lowest Maastrichtian. However, the first appearance of this species in Hokkaido and Sakhalin is nearly synchronous with that in the Pacific coast of North America.

From Santonian to early Campanian times, *P. indra* was distributed in the Indian region (South Africa, Madagascar, and southern India) (Kossmat, 1895; Kennedy and Klüger, 1977). This evidence shows that this species extended its geographical distribution from the Indian region to the North Pacific region in late Campanian time.

Acknowledgements

I wish to thank Prof. Itaru Hayami and Prof. Kazushige Tanabe, University of Tokyo, for many helpful suggestions during the course of this study, and for critical reading of the manuscript. I am much indebted to Prof. Emeritus Tatsuro Matsumoto, Kyushu University, for helpful suggestion, and to Drs. Haruyoshi Maeda, Kyoto University, Tomoki Kase, National Science Museum, Kazuto Kodama, Koch University, Takashi Okamoto, Ehime University, Mr. Toru Takeuchi, Nagoya University and Mr. Toshiya Miyauchi, Natural History Collection of Northern Hokkaido, for their help in the field work and for providing specimens.

References

(Madagascar). IV. Les Phylloceratidae; V. Les
Gaudryceratidae; VI. Les Tetragonitididae.
11.
——, 1969: Atlas des fossiles caractéristiques de
Madagascar (Ammonites). XV (Campanien
Inférieur), 216 pp., pls. 514-606. Service Géol.,
Tananarive.
Forbes, E., 1846: Report on the Cretaceous fossil
invertebrates from southern India, collected by
Mr. Kaya and Mr. Cunliff. Trans. Geol. Soc.
Henderson, R.A. and McNamara, K.J., 1985: Maa-
saichian nonheteromorph ammonites from the
Miria Formation, Western Australia. Palae-
Jones, D.H., 1963: Upper Cretaceous (Campanian
and Maastrichtian) ammonites from southern
Alaska. U.S. Geol. Surv., Prof. Paper 432, p. 1-
53, pls. 1-41.
Kennedy, W.J. and Klinger, H.C., 1977: Cretaceous
faunas from Zululand and Natal, South Africa.
The ammonite family Tetragonitidae Hyatt, 1900.
Kossmat, F., 1895: Untersuchungen über die
Geol. Öst.-Ung., Bd. 9, p. 97-203, pls. 15-25.
Matsumoto, T., 1942: Fundamentals in the Creta-
ceous stratigraphy of Japan. Part I. Mem.
Fac. Sci., Kyushu Univ., Ser. D, Vol. 1, no. 3,
p. 129-280, pls. 5-20.
——, 1959: Upper Cretaceous ammonites of Califor-
——, 1960: Upper Cretaceous ammonites of Califor-
——, 1984: Concluding Remarks. In, Matsumoto,
T., Some ammonites from the Campanian (Upper
Cretaceous) of northern Hokkaido, Part III.
Palaeont. Soc. Japan, Spec. Papers, no. 27, p. 77-
93.
—— and Miyachi, T., 1984: Some Cretaceous
ammonites from the Soya area. In, Matsumoto,
T. Some ammonites from the Campanian (Upper
Cretaceous) of northern Hokkaido, Part II.
Palaeont. Soc. Japan, Spec. Papers, no. 27, p. 33-
76, pls. 10-31.
Muller, J.E. and Jeletzky, J.A., 1970: Geology of the
Upper Cretaceous Nanaimo Group, Vancouver
Island and Gulf Islands, British Columbia.
Shigeta, Y., 1989: Systematics of the ammonite genus
Tetragonites from the Upper Cretaceous of Hok-
no. 156, p. 319-342.
Spath, L.F., 1922: On the Senonian ammonite fauna
of Pondoland. Trans. R. Soc. S. Africa, vol. 10,
p. 113-147, pls. 5-9.
Stoliczka, F., 1865: The fossil Cephalopoda of the
Cretaceous rocks of southern India. Mem.,
Geol. Surv. India, Palaeont. Indica (3), vol. 6-9,
p. 107-154, pls. 55-80.
Usher, J.L., 1952: Ammonite faunas of the Upper
Cretaceous of Vancouver Island, British Colum-
182.
Van Hoenen, E.C.N., 1920: Description of some
Cretaceous ammonites from Pondoland. Ann.
Ward, P.D., 1978: Revision to the stratigraphy and
biochronology of the Upper Cretaceous
Nanaimo Group, British Columbia and Wash-
vol. 15, no. 3, p. 405-423.
Whiteaves, J.F., 1879: On the fossils of the
Cretaceous rocks of Vancouver and adjacent
Islands in the Strait of Georgia. Mesozoic Fos-
——, 1903: On some additional fossils from the
Vancouver Cretaceous, with a revised list of the
species therefrom. Mesozoic Fossils, vol. 1, no. 5,
Woods, H., 1906: The Cretaceous fauna of Pon-
doland. Ann. S. Africa. Mus., vol. 4, p. 275-
350, pls. 33-44.

Hokkaido 北海道, Kiyohama 清浜, Naibuti 内浦, Soya 宗谷.

北海道及びサハリンの上部白亜系産テトラゴニティス科アンモナイト Pseudophyllites indra について : 北海道・宗谷地域のオランパイ層及びサハリン・ナイア層のクラシノヤ
ルカ層より産出した Pseudophyllites indra について, 初期遊体内部構造および遊形の個体
発生を記載した。標本はカンパニアン階上部の Metaplagioceras subtilissatum 帯の
Schlueterella kawadai 亜帯からのみ産出したが, 両地域での本種の産出時期は他の北太平洋
地域での初産出時期とはほぼ一致する。本種はサントニアン期後からカンパニアン前期に
は南アフリカや南インドに分布していたことから, カンパニアン後期に北太平洋地域へ分布
域を拡大したものと考えられる。