The Phylogenetic Positions of Four Endangered Vaccinium Species in Japan

Chie Tsutsumi

Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan E-mail: tsutsumi@kahaku.go.jp

(Received 15 February 2011; accepted 23 March 2011)

Abstract In total, 19 species and several varieties of *Vaccinium* are recognized in Japan. Five of them are evaluated to be endangered. In this study, molecular phylogenetic analyses for four of the five endangered species were performed using nuclear ITS and chloroplast *matK* regions in order to clarify whether they are recent derivatives, as suggested by morphological comparison. The result showed that *V. amamianum, V. boninense, V. sieboldii,* and *V. yakushimense* have the same or similar sequences to *V. emarginatum, V. wrightii, V. ciliatum,* and *V. hirtum* and relatives, respectively. Small genetic divergences between the endangered species and their respective relatives infer that the endangered species are likely neo-endemic.

Key words : endangered species, ITS, matK, molecular phylogeny, Vaccinium.

Introduction

Vaccinium L. (Ericaceae) consists of about 500 species distributed in worldwide except Australia (Vander Kloet and Dickinson, 2009). It is a morphologically diverse genus including terrestrial or epiphytic shrubs and lianas (Vander Kloet, 1990). It is divided into more than 30 sections (e.g., Sleumer, 1941; Vander Kloet and Dickinson, 2009), although the systematics is controversial (e.g., Sleumer, 1941; Stevens, 1969; Vander Kloet, 1996; Vander Kloet and Dickinson, 1992, 1999, 2009). Molecular phylogenetic studies of Vaccinium and Vaccinieae showed that Vaccinieae is monophyletic while Vaccinium is polyphyletic (Kron et al., 1999, 2002; Powell and Kron, 2002). Kron et al. (2002) and Powell and Kron (2002) clarified several monophyletic sections in Vaccinium, although the other taxa within Vaccinieae remain unresolved.

Nineteen species and seven varieties of *Vaccinium* are recognized in Japan (Yamazaki, 1993). Among them, five species, i.e., *V. amamianum* Hatus. [treated as *V. emarginatum* Hayata in Yamazaki (1993)], *V. boninense* Nakai, *V. microcarpum* (Turcz. ex Rupr.) Schmalh., *V. sieboldii* Miq. and *V. yakushimense* Makino are endangered in the Red List of Japanese vascular plants (Environment Agency of Japan, 2000; Ministry of the Environment, Japan, 2007).

Vaccinium amamianum is an evergreen epiphytic shrub in evergreen forests and critically endangered (CR) according to modified IUCN conservation ratings. It occurs only on Amami-Oshima in Japan and is quite rare (Hotta, 2004). *Vaccinium amamianum* was considered to be close to, but distinct from *V. emarginatum* in Taiwan by the pubescent branches, small leaves and terminal racemose inflorescences (Hatusima, 1962, 2002). Yamazaki (1989, 1993), however, treated it as a synonym of *V. emarginatum* based on their morphological similarities.

Vaccinium boninense is an evergreen shrub and is vulnerable species (VU). It is distributed only on the Bonin Islands (Nakai, 1926; Toyoda, 1981; Yamazaki, 1993). It is morphologically similar to *V. wrightii* A. Gray distributed in the Ryukyu Islands and Taiwan, but distinct from it by the hairs on calyx and corolla, the narrow sepal, the short pedicel, and the short awn of anther (Yamazaki, 1993). *Vaccinium boninense,* along with *V. wrightii* and *V. bracteatum* Thunb., are included in sect. *Bracteata* (Sleumer, 1941; Stevens, 1969; Yamazaki, 1993), while Vander Kloet and Dickinson (2009) assigned *V. wrightii* and relatives to sect. *Eococcus*.

Vaccinium microcarpum (VU) is an evergreen dwarf shrub distributed in Hokkaido and high mountains in Honshu, Japan, and also widely in cool regions of the northern hemisphere (Yamazaki, 1993). It is quite similar to *V. oxycoccus* L. Vander Kloet (1983b) treated *V. microcarpum* as conspecific with *V. oxycoccus* by the morphological similarities, while Yamazaki (1993) treated them as distinct species by the leaf size and presence/absence of hairs on the pedicel.

Vaccinium sieboldii (CR) is a deciduous erect shrub and distributed in very limited, 65 km wide in western Shizuoka and Aichi Prefecture, central Japan (Yamazaki, 1993; Takahashi, 2001; Hirai *et al.*, 2010). Morphologically it is quite similar to, but different from *V. ciliatum* Thunb. in the long pedicel and sparse hairs on the leaf beneath and pedicel (Yamazaki, 1993). It is assigned to sect. *Ciliata* including *V. ciliatum*, *V. oldhamii* Miq. and relatives (Sleumer, 1941; Yamazaki, 1993). A study on their genetic diversities and phylogenetic relationships also revealed that *V. sieboldii* is quite close to *V. ciliatum* (Hirai *et al.*, 2010).

Vaccinium yakushimense (VU) is one of endemic species in Yakushima Island (Yahara et al., 1987). It is usually epiphytic at high elevations (>500 m alt.) (Yamazaki, 1993; Kawahara, 1995; Takahashi, 2001). Morphologically it is close to V. smallii s.l., and V. hirtum s.l. (Vander Kloet and Dickinson, 1992; Yamazaki, 1993). They had been placed in sect. Cyanococcus (Sleumer, 1941) and later they were transferred to sect. Hemimyrtillus including several European species (Stevens, 1969; Vander Kloet, 1983a; Vander Kloet and Dickinson, 1992). Molecular phylogeny, however, showed that V. smallii and V. hirtum in northeast Asia are neither closely related to sect. *Cyanococcus* nor sect. *Hemimyrtillus*, but are close to sections *Macropelma*, *Myrtillus*, *Oxycoccoides* and *Praestantia* (Powell and Kron, 2002).

As described above, the morphological similarities between the Japanese endangered *Vaccinium* species and the respective relatives are well recognized. However, their taxonomic treatments and systematics remain unclear. To determine the molecular phylogenetic positions of the species and recognize the most closely related species to them, I conducted molecular phylogenetic analyses for the endangered species and their morphological relatives, and measured molecular differences between the endangered species and its relatives. Furthermore, the endemism of the species is also discussed.

Materials and Methods

Leaf samples of 11 Vaccinium species from Japan and one species from Taiwan were collected in the field or from cultivated plants (Table 1). One of the five endangered species, V. microcarpum, was not analyzed in this study because material was not available. DNA was extracted from fresh or silica-gel-dried materials using a QUIAGEN DNeasy Mini Kit (QUIAGEN, Valencia, CA) following the manufacturer's instruction.

The internal transcribed spacer regions of 18S-26S nuclear ribosomal DNA (ITS), and matK (a maturase-encoding gene) were analyzed. Primers for amplification are 17SE (Sun et al., 1994) and '26SE' (Topik et al., 2005, modified 26SE in Sun et al., 1994) in the ITS region, and trnK-3914F and trnK-2R (Johnson and Soltis, 1994) in matK with internal primers MK-F1 and MK-F2 (Koi et al., 2008). PCR was performed using a DNA thermal cycler (Perkin-Elmer 9700, Applied Biosystems, Foster, CA) with Ex Taq DNA polymerase (TaKaRa Bio, Tokyo, Japan) and Ampdirect Plus (Shimadzu, Kyoto, Japan) in 35 denaturation, annealing, and elongation cycles (30 sec at 94°C, 30 sec at 50–55°C and 90 sec at 72°C) with a final elongation step (7 min at 72° C). The

Species		Source	GenBank ac ITS	ccession No. matK
V. amamianum Hatus.		Cultivated in Koishikawa Botanical Garden; Tsutsumi s. n.	AB623180	AB623166
V. boninense Nakai		Cultivated in Koishikawa Botanical Garden; Tsutsumi s. n.	AB623184	AB623168
V. bracteatum Thunb.		Yakushima, Kagoshima, Japan; S. Tagane & Y. Tsujita (TNS763429)		AB623177
V. ciliatum Thunb.		Cultivated in Tsukuba Botanical Garden; Tsutsumi ARA1	AB623188	AB623172
V. emarginatum Hayata	А	Kaohsiung Co., Taiwan; Tsutsumi et al.(TNS736868)	AB623181	AB623166
· ·	В	Kaohsiung Co., Taiwan; Tsutsumi et al. (TNS736871)	AB623182	AB623166
V. hirtum Thunb.	А	Shinshiro, Aichi, Japan; Tsutsumi Ho2-20100514	AB623187	AB623171
	F	Fukushima, Japan; Tsutsumi Fuku172-20100509	AB623185	AB623169
V. oldhamii Miq.	Κ	Hamamatsu, Shizuoka, Japan; Tsutsumi 175-19-N-1	AB623189	AB623174
-	Μ	Hamamatsu, Shizuoka, Japan; Tsutsumi M20o-20100513	AB623189	AB623173
V. sieboldii Miq.	Κ	Hamamatsu, Shizuoka, Japan Tsutsumi 175ws-20100513	AB623191	AB623175
-	Μ	Hamamatsu, Shizuoka, Japan; Tsutsumi M20s-20100513	AB623190	AB623176
V. smallii A. Gray var. glabrum Koidz.		Hamamatsu, Shizuoka, Japan; Tsutsumi 175sm-20100513	AB623186	AB623170
V. wrightii A. Gray		Amami-Oshima, Kagoshima, Japan; Ebihara et al. (TNS764246)	AB623192	AB623178
V. yakushimense Makino		Yakushima, Kagoshima, Japan; S. Tagane & Y. Tsujita (TNS763260)	AB623183	AB623167

Table 1. Species used in molecular phylogenetic analysis, sources and GenBank accession no. of ITS and *matK* regions

purified PCR products were with ExoSAP-IT (USB corporation, Cleveland, OH) following the manufacturer's instruction. Sequencing was conducted using an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems). The sequences obtained were assembled using Seqman II (Dnastar, Madison, WI). The assembled sequences were aligned by Clustal X program (Thompson et al., 1997) and then aligned manually. In addition to the sequences analyzed, registered sequences in GenBank used in Powell and Kron (2002) were added for phylogenetic analyses.

Phylogenetic analyses were performed by Mr-Bayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). The bases that could not been identified were treated as unknown (N). Gaps were treated as missing data. MrModeltest 2.0 (Nylander, 2004) was used to determine the nucleotide substitution model for Bayesian analysis. Bayesian searches were conducted by meme with four chains over four million and two million generations for the ITS dataset and the *matK* dataset, respectively, sampling every 100 generations. Trees obtained before stationary generations were discarded as

Table 2.	Di	ifferences	of se	quences	in I	TS and <i>i</i>	natK
regio	ns	between	four	endange	ered	species	and
their	clo	sely relat	ed sp	ecies			

	ITS	matK
V. amamianum–V. emarginatum	0-1	0
V. boninense–V. wrightii	1	1
V. boninense–V. bracteatum	—	12
V. sieboldii–V. ciliatum	0-3	0-1
V. sieboldii–V. oldhamii	0-3	5-7
V. yakushimense–V. smallii	3	3
V. yakushimense–V. hirtum (F)	2	1

burn-in trees and the rest of trees were used to calculate posterior probabilities. *Leucothoe fontanesiana* (Steudel) Sleumer, *Andromeda polifolia* L., and *Zenobia pulverulenta* (Bartram ex Willd.) Pollard were used as outgroups based on the results of Powell and Kron (2002).

Results

Differences of sequences in nuclear ITS (ca. 650 bp) and chloroplast *matK* (ca. 1520 bp) between the four endangered species and their closely related species are shown in Table 2. *Vaccinium amamianum* had no or one substitution distinguishable from *V. emarginatum* samples from Taiwan in the ITS and *matK* regions. *Vaccinium boninense* was close to *V. wrightii* and differed from it in only 1 substitution in each of the ITS and *matK* regions. In contrast, *V. boninense* differed from *V. bracteatum* in 12 substitutions in *matK*, although the ITS region of *V. bracteatum* could not be analyzed well in this study. *Vaccini*-

Fig. 1. Consensus tree by Bayesian analysis based on the nuclear ITS sequence dataset. Figures above branches indicate posterior probabilities (p>0.6) calculated by Bayesian analysis. Names shown by bold indicate samples analyzed in this study.

um sieboldii had no or a few substitutions distinguishable from *V. ciliatum*, and differed from *V. oldhamii* in 0–3 substitutions in ITS and 5 to 7 substitutions in *matK. Vaccinium yakushimense* differed from *V. smallii* or *V. hirtum* by a few substitutions in both the nuclear ITS and the chloroplast *matK* regions.

The molecular phylogenetic trees deduced from each of the nuclear ITS region and the matK sequences showed that all samples were nested in the clade Vaccinieae (Figs. 1 and 2). Vaccinium amamianum, along with V. emarginatum, formed a monophyletic clade with V. caudatifolium Hayata and V. filiforme (J.J. Smith) Sleumer and the clade was nested in the Agapetes clade shown in Powell and Kron (2002). Vaccinium boninense formed a clade with V. wrightii with high supports in both the ITS and *matK* trees. The clade was sister to V. cereum (L.f.) Forster, and then they were close to V. fragile Franch. in the ITS tree, while the clade formed a monophyletic clade with V. bracteatum, V. sieboldii, V. ciliatum and V. oldhamii in the matK tree with high posterior probabilities. Vaccinium sieboldii, V. ciliatum and V. oldhamii formed a monophyletic clade both in the ITS tree and the *matK* tree, although the phylogenetic position remained unclear in the ITS tree because of low supports of the clade. Vaccinium yakushimense merged in the clade with V. smallii and V. hirtum. The clade then was sister to the group of V. japonicum Mig. and V. praestans Lamb. in the *matK* tree, while the phylogenetic position of V. vakushimense, V. hirtum and V. smallii remained unsolved in the ITS tree.

Discussion

The present results revealed the phylogenetic positions of the four endangered species in *Vaccinium*, and suggested their closely related species, which were the same as the candidates morphologically estimated. The results also showed genetic divergences between the endangered species and their relatives.

Similarities in both the ITS and the matK

sequences between V. amamianum and V. emarginatum supported the taxonomic treatment that V. amamianum is synonymous to V. emarginatum (Yamazaki, 1993), a common species in Taiwan (Li et al., 1998). To clarify the taxonomic treatment and the genetic diversity of V. amamianum and V. emarginatum, further molecular and morphological analyses are needed using more samples. Vaccinium amamianum and V. emarginatum are not found in the Okinawa Prefecture, located between Taiwan and Amami-Oshima Island (Yamazaki, 1993). They were sister to Taiwanese V. caudatifolium Hayata and Bornean V. filiforme (J.J. Smith) Sleumer. The phylogenetic relationships and patterns of their distributions suggest that V. amamianum was likely derived from southeastern Asia and it survives only in Amami-Oshima Island in Japan. Thus, the endangered V. amamianum occurs at the isolated northern end of the species group and hardly differentiated from the neighboring V. emarginatum.

About 70% of the species on the Bonin Islands are related to Southeast Asian species, and considered to be recently derived (Toyoda, 1981; Shimizu, 2010). *Vaccinium boninense* is also morphologically and phylogenetically close to *V. wrightii*, a common species in Ryukyus and Taiwan. *Vaccinium cereum*, close to *V. boninense* and *V. wrightii* in the ITS tree and far from them in the *matK* tree (Figs. 1 and 2), is suspected to have a hybrid origin (Powell and Kron, 2002). The conflict of the phylogenetic position of the clade of *V. boninense* and *V. wrightii* between the ITS tree and the *matK* tree seems also likely to be caused by the introgression in the group.

Few difference was observed in the ITS and *matK* regions between *V. sieboldii* and *V. cilia-tum*, while a detail analysis using SSR markers suggested their differentiation (Hirai *et al.*, 2010). Hirai *et al.* (2010) also showed a clear distinction between *V. sieboldii* and *V. oldhamii* in SSR markers. *Vaccinium sieboldii* occurs in quite restricted area in central Japan and is separate from *V. ciliatum* distributed fragmentally in western Japan. Thus, *V. sieboldii* and *V. ciliatum* differentiated recently in fragmental areas, and

Fig. 2. Consensus tree by Bayesian analysis based on the chloroplast *matK* sequence dataset. Figures above branches indicate posterior probabilities (p>0.6) calculated by Bayesian analysis. Names shown by bold indicate samples analyzed in this study.

the former is threatened. In contrast, *V. oldhamii* is widely distributed in Japan, Korea and China, overlapping with *V. sieboldii* and *V. ciliatum* (Yamazaki, 1993; Hirai *et al.*, 2010).

Vaccinium vakushimense differed from V. smallii and V. hirtum in a few substitutions, although they are morphologically similar. Vaccinium yakushimense is distinct from those of V. smallii and V. hirtum in the distribution (Vander Kloet and Dickinson, 1992; Yamazaki, 1993); V. yakushimense occurs only at high altitudes of Yakushima Island, southern Kyusyu. Vaccinium smallii s.l. is distributed in the Kurile islands and Sakhalin, Russia, North and South Korea, and Honshu and Shikoku, Japan. Vaccinium hirtum s.l. is distributed in Hokkaido to northern Kyushu, Japan, and South Korea. Thus, Vaccinium vakushimense evolved as an epiphyte in the isolated southern end of the predominantly terrestrial group.

The four endangered species, *V. amamianum*, *V. boninense*, *V. sieboldii* and *V. yakushimense*, are endemic species to quite restricted distributions areas, disjunct from the most closely related species. Although the samples analyzed are insufficient, the small genetic divergences between the endangered species and their relatives infer that the endangered species are neo-endemic and threatened partly due to limited distribution areas, or a local variant in the periphery of the distribution region. Further comparison between the endangered plants and relatives is necessary to clarify the taxonomic status and diversification of endemic or local species that are apt to be threatened.

Acknowledgments

I thank K. Ando, A. Ebihara, Y. Hirayama, C.-I Huang, M. Kato, G. Kokubugata, T. Muramatsu, A. Okuda, C.-I Peng, S. Tagane, Y. Tsujita, H. Yamashita, C.-K. Yang, and Koishikawa Botanical Garden, The University of Tokyo, for providing the materials and/or help during the field trips. I also gratefully thank Y. Hirayama, N. Katayama, and A. Uehara for technical assistance and M. Kato for useful comments to the manuscript. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and Showa Seitoku Memorial Foundation.

References

- Environment Agency of Japan. 2000. Threatened Wildlife of Japan — Red Data Book 8: Vascular Plants. 2nd ed. Japan Wildlife Research Center, Tokyo (in Japanese).
- Hatusima, S. 1962. A new epiphytic *Vaccinium* from the Ryukyus. Journal of Japanese Botany 37: 13–15.
- Hatusima, S. 2002. Taxonomical news of the Ryukyu plants (2). The Biological Magazine, Okinawa 40: 57–60.
- Hirai, M., Yoshimura, S., Ohsako, T. and Kubo, N. 2010. Genetic diversity and phylogenetic relationships of the endangered species *Vaccinium sieboldii* and *Vaccinium ciliatum* (Ericaceae). Plant Systematics and Evolution 287: 75–84.
- Hotta, M. 2004. Distribution areas of rare or endemic plant species in Amami Islands. Bulletin of the Kagoshima Prefectural Jr. College. Natural Science 55: 1–108.
- Huelsenbeck, J. P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
- Johnson, L. A. and Soltis, D. E. 1994. *MatK* DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany 19: 143–156.
- Kawahara, K. 1995. Plants of Yakushima. Yaedake-shobo, Tokyo (in Japanese).
- Koi, S., Kita, Y. and Kato, M. 2008. Paracladopus chanthaburiensis, a new species of Podostemaceae from Thailand, with notes on its morphology, phylogeny and distribution. Taxon 57: 201–210.
- Kron, K. A., Fuller, R., Crayn, D. M., Gadek, P. A. and Quinn, C. J. 1999. Phylogenetic relationships of epacrids and vaccinioids (Ericaceae s.l.) based on *matK* sequence data. Plants Systematics and Evolution 218: 55–65.
- Kron, K. A., Powell, E. A. and Luteyn, J. L. 2002. Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from *matK* and nuclear ribosomal ITS regions, with comments on the placement of *Satyria*. American Journal of Botany 89: 327–226.
- Li, H.-L., Lu, S.-Y., Yang, Y.-P. and Tseng, Y.-H. 1998. Ericaceae. In: Huang, T.-C., *et al.* (eds.), Flora of Taiwan, 2nd. ed. 4: 17–39. Editorial Committee, Dept. Bot., NTU, Taipei.
- Ministry of the Environment, Japan. 2007. Threatened

Wildlife of Japan—Red Data Book 8: Vascular Plants: Corrections and Additions. Japan Wildlife Research Center, Tokyo (in Japanese).

- Nakai, T. 1926. Notulae ad plantas Japoniae et Koreae XXXII. The Botanical Magazine, Tokyo 40: 463–494.
- Nylander, J. A. A. 2004. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
- Powell, E. A. and Kron, K. A. 2002. Hawaiian blueberries and their relatives—a phylogenetic analysis of *Vaccinium* sections *Macropelma*, *Myrtillus*, and *Hemimyrtillus* (Ericaceae). Systematic Botany 27: 768–779.
- Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Shimizu. Y. 2010. Evolution on the Bonin Islands (translated by C. Tsutsumi). Gijutsu-Hyoron, Tokyo (in Japanese).
- Sleumer, H. 1941. Vaccinioideen-Studien. Botanische Jahrbücher 71: 375–510.
- Stevens, P. F. 1969. Taxonomic studies in the Ericaceae. University of Edinburgh. Oh. D. thesis. Edinburgh, Scotland. Cited from other references.
- Sun, Y., Skinner, D. Z., Liang, G. H. and Hulbert, S. H. 1994. Phylogenetic analysis of *Sorghum* and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89: 26–32.
- Takahashi, H. 2001. Ericaceae. In: Takahashi, H. and Katsuyama, T. (eds.), Woody Plants of Japan, Gamopetalae & Monocotyledoneae & Gymnospermae. pp. 10–159. Yama-Kei Publishers Co. Ld., Tokyo (in Japanese).
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The Clustal X Windows Interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.
- Toyoda, T. 1981. Flora of Bonin Is. Aboc-sha, Kamakura (in Japanese).
- Topik, H., Yukawa, T. and Ito, M. 2005. Molecular phylo-

genetics of subtribe Aeridinae (Orchidaceae): insights from plastid *matK* and nuclear ribosomal ITS sequences. Journal of Plant Research 118: 271–284.

- Vander Kloet, S. P. 1983a. The taxonomy of *Vaccinium* section *Cyanococcus*: a summation. Canadian Journal of Botany 61: 256–266.
- Vander Kloet, S. P. 1983b. The taxonomy of *Vaccinium* section *Oxycoccus*. Rhodora 85: 1–43.
- Vander Kloet, S. P. 1990. Ericaceae. In: Wagner, W. L., Herbst, D. R. and Sohmer, S. H. (eds.), Manual of the Flowering Plants of Hawaii. pp. 591–595. Bishop Museum Special Publication No. 83. University of Hawaii Press, Honolulu.
- Vander Kloet, S. P. 1996. Taxonomy of Vaccinium sect. Macropelma (Ericaceae). Systematic Botany 21: 355–364.
- Vander Kloet, S. P. and Dickinson, T. A. 1992. The taxonomy of *Vaccinium* section *Hemimyrtillus*. The Botanical Magazine, Tokyo 105: 601–614.
- Vander Kloet, S. P. and Dickinson, T. A. 1999. The taxonomy of *Vaccinum* section *Myrtillus* (Ericaceae). Brittonia 51: 231–254.
- Vander Kloet, S. P. and Dickinson, T. A. 2009. A subgeneric classification of the genus *Vaccinium* and the metamorphosis of *V* section *Bracteata* Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. Journal of Plant Research 122: 253–268.
- Yahara, T., Ohba, H., Murata, J. and Iwatsuki, K. 1987. Taxonomic review of vascular plants endemic to Yakushima Island, Japan. Journal of the Faculty of Science, University of Tokyo, Section 3 14: 69–119.
- Yamazaki, T. 1989. Ericaceae. In: Satake, Y., Hara, H., Watari, S. and Tominari, T. (eds), Wild Flowers of Japan, Woody Plants, Vol II. pp. 122–156. Heibonsha, Tokyo (in Japanese).
- Yamazaki, T. 1993. Ericaceae. In: Iwatsuki, K., Yamazaki, T., Boufford, D. E. and Ohba, H. (eds.), Flora of Japan, Vol IIIa, Angiospermae Dicotyledoneae Sympetalae (a). pp. 6–63. Kodansha, Tokyo.