Phylogeography of the Genus *Pisolithus* Revisited with some Additional Taxa from New Caledonia and Japan

Kentaro Hosaka

Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba 305–0005, Japan E-mail: khosaka@kahaku.go.jp

Abstract Molecular phylogenetic analyses for the genus *Pisolithus* (Basidiomycota, Boletales, Sclerodermatineae) were conducted based on the ITS sequences. More than three hundred sequences were retrieved from the GenBank database. In addition, the ITS sequences from some specimens recently collected from New Caledonia and Japan were newly generated for this study. Taxa from New Caledonia did not form a monophyletic group, suggesting multiple dispersals of the genus to New Caledonia, but they all belong to the same clade which is roughly corresponding to the "Lineage B" designated by the previous study. In most cases, Australian taxa were demonstrated to be sister taxa to New Caledonian taxa, but at least in one clade, taxa from New Zealand and New Caledonia were more closely related to each other. Taxa from Japan did not form a monophyletic group, either. Japanese taxa were demonstrated to be closely related to other Asian taxa from China and Thailand. Biogeographical patterns of *Pisolithus* indicate that long distance dispersal may be the most important factor, and this may be associated with its ability to switch ectomycorrhizal hosts rather frequently.

Key words: Basidiomycota, biogeography, Boletales, ectomycorrhizae, fungi, ITS, phylogeny, systematics.

Introduction

The genus *Pisolithus* (Basidiomycota, Boletales, Sclerodermatineae) is an ectomycorrhizal fungus and reported worldwide (Marx, 1977). It was once thought that one to a few species are distributed worldwide, but because of its morphological, biochemical, and ecological diversity (Burgess *et al.*, 1995; Grand, 1976; Grenville *et al.*, 1985; Kope and Fortin, 1990; Marx, 1977), mycologists have recognized that many biological species exist in this genus.

The genus has been considered closely related to the genus *Scleroderma* (Cunningham, 1944; Jülich, 1981), which was further confirmed by recent molecular studies (Binder and Hibbett, 2006; Hibbett and Binder, 2002; Hibbett and Thorn, 2001; Matheny *et al.*, 2007; Watling, 2006). Some unexpected findings include a close relationship of the genus to *Calostoma* and *Boletinellus* (Binder and Hibbett, 2006), which along with *Pisolithus* and *Scleroderma* are included in the suborder Sclerodermatineae. Currently *Pisolithus* is in the order Boletales (Kirk *et al.*, 2008).

Despite morphological, biochemical, and ecological variations, infrageneric taxonomy of *Pisolithus* has not been advanced until recently (Kanchanaprayudh *et al.*, 2003b; Reddy *et al.*, 2005; Thomas *et al.*, 2003; Watling *et al.*, 1995). More recently, large scale phylogenetic studies have been conducted for the genus and some infrageneric classification systems are being established (Martin *et al.*, 2002; Moyersoen *et al.*, 2003; Kanchanaprayudh *et al.*, 2003a). Importantly, these studies revealed a significant genetic diversity of the genus and molecular data clearly demonstrated that there are clear biogeographical patterns.

Martin et al. (2002) conducted phylogeograph-

ical study of Pisolithus based on worldwide sampling and demonstrated that there are two major lineages within the genus, and clear trends in biogeographical patterns and ectomycorrhizal host affiliations. Based on these findings, they hypothesized an ancient origin of the genus with subsequent vicariance when Pangaea was split into the northern (Laurasia) and southern (Gondwana) continents. Although such an ancient origin of modern ectomycorrhizal taxa has frequently been postulated (Halling, 2001), the exact time of origin for Pisolithus has never been investigated. It is noteworthy that recent molecular clock studies consistently indicate that fungi have a very ancient origin (Heckman et al., 2001; Hedges et al., 2004; Taylor and Berbee, 2006) and the origin of modern ectomycorrhizal fungi probably predated that of plant partners (Hibbett and Matheny, 2009).

Although Martin *et al.* (2002) and the studies by subsequent workers (Moyersoen *et al.*, 2003; Kanchanaprayudh *et al.*, 2003a) were extensive and made significant contribution to fungal biogeographical studies, some areas of significance have largely been ignored. Most notably, taxa from New Caledonia, where *Pisolithus* is known to occur, have never been sampled in previous studies. This ignorance of New Caledonian fungal flora is more or less true for fungal biogeographical studies in general. Even though New Caledonia has been a center of interest for studying vicariance biogeography of many plants and animals (Sanmartín *et al.*, 2004; Swenson *et al.*, 2001), fungal biogeographical studies, including the ones with extensive taxon sampling (Coetzee *et al.*, 2001, 2003; Hibbett, 2001; James *et al.*, 1999, 2001; Matheny *et al.*, 2009; Zervakis *et al.*, 2004) did not include taxa from New Caledonia. Notable exception includes the study by Hosaka *et al.* (2008), but only a few specimens from New Caledonia were included.

Recent fieldwork in New Caledonia and Japan revealed several species of *Pisolithus*. In addition, more and more DNA sequences of *Pisolithus* from New Caledonia and other parts of the world are now deposited in GenBank. These allow us to cover more complete diversity of *Pisolithus*, which in turns allows us to further clarify biogeography of the genus. This study attempts to answer the questions of monophyly and origin(s) of the genus *Pisolithus* in New Caledonia and Japan.

Materials and Methods

Taxon sampling, PCR, and DNA sequencing

Taxa sampled, along with GenBank accession numbers, are listed in Tables 1 and 2. A total of 317 taxa (30 outgroup and 287 ingroup taxa) were sampled for this study. The selection of outgroup taxa was based on the phylogeny of previous studies (Binder and Hibbett, 2006) to cover the diversity of Boletales. Because *Pisolithus* belongs to the suborder Sclerodermatineae and is

Table 1. Specimens used in this study with information of geographical origin, presumable ectomycorrhizal hosts, and GenBank accession numbers

Taxon	Herbarium	Specimen No.	Locality	Presumable ECM hosts	Accession No.
Pisolithus sp.	TNS	KH-NC09-002	New Caledonia, Goro	Myrtaceae/Leguminosae	GQ429210
Pisolithus sp.	TNS	KH-NC09-004	New Caledonia, Goro	Myrtaceae/Leguminosae	GQ429207
Pisolithus sp.	TNS	KH-NC09-005	New Caledonia, Goro	Myrtaceae/Leguminosae	GQ429208
Pisolithus sp.	TNS	KH-NC09-006	New Caledonia, Goro	Myrtaceae/Leguminosae	GQ429209
Pisolithus sp.	TNS	KH-NC09-026	New Caledonia, Goro	Myrtaceae/Leguminosae	GQ429211
Pisolithus sp.	TNS	KH-NC09-059	New Caledonia, Les Bois du Sud	Myrtaceae/Leguminosae	GQ429212
Pisolithus sp.	TNS	F-13374	Japan, Mie	Pinus sieboldii	GQ429214
Pisolithus sp.	TNS	F-2158	Japan, Tokyo	unknown	GQ429215
Pisolithus sp.	TNS	F-12086	Japan, Hyogo	Castanopsis/Quercus	GQ429216
Pisolithus sp.	TNS	F-16874	Japan, Mie	unknown	GQ429213

C.	Que e l'	A	T 1''	Decemental ECM 1
Genus	Species	Accession No.	Locality	Presumable ECM hosts
[INGROUP]				
Pisolithus	albus	AF 440868	Australia	Eucalyptus
Pisolithus	albus	FJ 710202	Australia	n/a
Pisolithus	albus	AM947069	New Caledonia	n/a
Pisolithus	albus	AM947070	New Caledonia	n/a
Pisolithus	albus	AM947071	New Caledonia	n/a
Pisolithus	albus	AM947072	New Caledonia	n/a
Pisolithus	albus	AM947073	New Caledonia	n/a
Pisolithus	albus	AM947074	New Caledonia	n/a
Pisolithus	albus	AM947075	New Caledonia	n/a
Pisolithus	albus	AM947076	New Caledonia	n/a
Pisolithus	albus	AM947077	New Caledonia	n/a
Pisolithus	albus	AM947078	New Caledonia	n/a
Pisolithus	albus	AM947079	New Caledonia	n/a
Pisolithus	albus	AM947080	New Caledonia	n/a
Pisolithus	albus	AM947081	New Caledonia	n/a
Pisolithus	albus	AM947082	New Caledonia	n/a
Pisolithus	albus	AM947083	New Caledonia	n/a
Pisolithus	albus	AM947084	New Caledonia	n/a
Pisolithus	albus	AM947085	New Caledonia	n/a
Pisolithus	albus	AM947086	New Caledonia	n/a
Pisolithus	albus	AM947087	New Caledonia	n/a
Pisolithus	albus	AM947088	New Caledonia	n/a
Pisolithus	albus	AM947089	New Caledonia	n/a
Pisolithus	albus	AM947090	New Caledonia	n/a
Pisolithus	albus	AM947091	New Caledonia	n/a
Pisolithus	albus	AM947092	New Caledonia	n/a
Pisolithus	albus	AM947093	New Caledonia	n/a
Pisolithus	albus	AM947094	New Caledonia	n/a
Pisolithus	albus	AM947095	New Caledonia	n/a
Pisolithus	albus	AM947096	New Caledonia	n/a
Pisolithus	albus	AM947097	New Caledonia	n/a
Pisolithus	albus	AM947098	New Caledonia	n/a
Pisolithus	albus	AM947099	New Caledonia	n/a
Pisolithus	albus	AM947100	New Caledonia	n/a
Pisolithus	albus	AM947101	New Caledonia	n/a
Pisolithus	albus	AM947102	New Caledonia	n/a
Pisolithus	albus	AM947103	New Caledonia	n/a
Pisolithus	albus	AM947104	New Caledonia	n/a
Pisolithus	albus	AM94/105	New Caledonia	n/a
Pisolithus	albus	AM947106	New Caledonia	n/a
Pisolithus	albus	AM947107	New Caledonia	n/a
Pisolithus	albus	AM947108	New Caledonia	n/a
Pisolithus	albus	AM947109	New Caledonia	n/a
Pisolithus	albus	AM947110	New Caledonia	n/a
Pisolithus	albus	AM94/111	New Caledonia	n/a
Pisolithus	albus	AM947112	New Caledonia	n/a
Pisolithus	albus	AM947113	New Caledonia	n/a
Pisolithus	albus	AM94/114	New Caledonia	n/a
Pisolithus	albus	AM947115	New Caledonia	n/a
Pisolithus	albus	AM947116	New Caledonia	n/a
Pisolithus	albus	AM94/11/	New Caledonia	n/a
Pisolithus	albus	AM947118	New Caledonia	n/a
Pisolithus	albus	AM947119	New Caledonia	n/a
Pisolithus	albus	AM94/120	New Caledonia	n/a
Pisolithus	albus	AM947121	New Caledonia	n/a
Pisolithus	albus	AM947122	New Caledonia	n/a

Table 2. DNA sequences used in this study with information of geographical origin, presumable ectomycorrhizal hosts, and GenBank accession numbers

Kentaro Hosaka

Table 2. -(Continued)-

Genus	Species	Accession No.	Locality	Presumable ECM hosts
Pisolithus	albus	AM947123	New Caledonia	n/a
Pisolithus	albus	AM947124	New Caledonia	n/a
Pisolithus	albus	AM947125	New Caledonia	n/a
Pisolithus	albus	AM947126	New Caledonia	n/a
Pisolithus	albus	AM947127	New Caledonia	n/a
Pisolithus	albus	AM947128	New Caledonia	n/a
Pisolithus	albus	FN 390950	New Caledonia	n/a
Pisolithus	albus	FN 390951	New Caledonia	n/a
Pisolithus	albus	FN 390952	New Caledonia	n/a
Pisolithus	albus	AY 318746	New Zealand	Kunzea
Pisolithus	albus	AM084705	n/a	n/a
Pisolithus	arhizus	AF 096976	n/a	n/a
Pisolithus	arhizus	EF 493273	n/a	n/a
Pisolithus	aurantioscabrosus	AF 415226	Malaysia	Shorea
Pisolithus	aurantioscabrosus	AF 415227	Malaysia	Shorea
Pisolithus	aurantioscabrosus	EU 718112	n/a	n/a
Pisolithus	marmoratus	AY 318745	New Zealand	Kunzea
Pisolithus	marmoratus	AF 440866	n/a	Eucalyptus
Pisolithus	microcarpus	AF 440867	Australia	n/a
Pisolithus	microcarpus	AM084706	n/a	n/a
Pisolithus	microcarpus	EU 289140	n/a	n/a
Pisolithus	tinctorius	AF 374624	Australia	Acacia
Pisolithus	tinctorius	AF 004732	Australia	Eucalyptus
Pisolithus	tinctorius	AF 004735	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374637	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374639	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374640	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374641	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374642	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374643	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374644	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374645	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374646	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374647	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374648	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374649	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374650	Australia	Eucalyptus
Pisolithus	tinctorius	AF 3/4651	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374652	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374653	Australia	Eucalyptus
Pisolithus	tinctorius	AF 3/4654	Australia	Eucalyptus
Pisolithus	tinctorius	AF 3/4655	Australia	Eucalyptus
Pisolithus	tinctorius	AF 3/4050	Australia	Eucalyptus
Pisolithus	tinctorius	AF 3/465/	Australia	Eucalyptus
Pisolithus	finctorius tinetorius	AF 3/4038	Australia	Eucalyptus
PISOIIINUS Disclithus	tinctorius	AF 3/4039	Australia	Eucalypius Eucalypius
PISOIIINUS	tinctorius	AF 3/4000	Australia	Eucalypius
PISOIIINUS Disclithus	tinctorius	AF 3/4001	Australia	Eucalypius Eucalypius
PISOIIINUS Disclithus	tinctorius	AF 3/4004	Australia	Eucalypius Eucalypius
Disclithus	tinctorius	AT 5/4005	Australia	Eucarypius Eucaboptus
F ISOIIINUS Disclithus	tinctorius	AF 3/400/	Australia	Eucalypius Eucalypius
F ISOIIINUS Disclithus	tinctorius	AF 374660	Australia	Eucalypius Eucalypius
Pisolithus	tinctorius	AF 374009	Australia	Eucalypius Eucalypius
Pisolithus	tinctorius	ΔF 37/671	Australia	Eucalypius Eucalypius
Pisolithus	tinctorius	ΔF 37/677	Australia	Eucarypius Eucabritus
Pisolithus	tinctorius	ΔF 37/67/	Australia	Eucalypius Eucalypius
Pisolithus	tinctorius	AF 374675	Australia	Fucabritus
1 1501111115	uncionus	AI 3/40/3	Ausualla	Бисшурниз

Table 2(Continued)-	
---------------------	--

Genus	Species	Accession No.	Locality	Presumable ECM hosts
Pisolithus	tinctorius	AF 374676	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374716	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374718	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374719	Australia	Eucalyptus
Pisolithus	tinctorius	AF 374662	Australia	Eucalyptus/Acacia
Pisolithus	tinctorius	AF 374663	Australia	Eucalyptus/Acacia
Pisolithus	tinctorius	AF 374708	Australia	Eucalyptus/Acacia
Pisolithus	tinctorius	AF 374714	Australia	Eucalyptus/Acacia
Pisolithus	tinctorius	AF 374715	Australia	Eucalyptus/Acacia
Pisolithus	tinctorius	AF 374666	Australia	Eucalyptus/Melaleuca
Pisolithus	tinctorius	AF 374713	Australia	Eucalyptus/Melaleuca
Pisolithus	tinctorius	AF 004736	Australia	n/a
Pisolithus	tinctorius	AF 004737	Australia	n/a
Pisolithus	tinctorius	AF 374720	Australia	n/a
Pisolithus	tinctorius	AF 374696	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374697	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374698	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374699	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374700	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374701	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374702	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374703	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374704	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374705	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374706	Brazil	Eucalyptus*
Pisolithus	tinctorius	U 62666	Brazil	Eucalyptus*
Pisolithus	tinctorius	AF 374673	China	Eucalyptus*
Pisolithus	tinctorius	AF 374678	China	Eucalyptus*
Pisolithus	tinctorius	AF 374679	China	Eucalyptus*
Pisolithus	tinctorius	AF 374680	China	Eucalyptus*
Pisolithus	tinctorius	AF 374681	China	Eucalyptus*
Pisolithus	tinctorius	AF 374684	China	Eucalyptus*
Pisolithus	tinctorius	AF 374710	China	Pinus
Pisolithus	tinctorius	AF 374717	China	Pinus
Pisolithus	tinctorius	AF 374711	China	Pinus/Eucalyptus*
Pisolithus	tinctorius	AF 374707	France	Pinus
Pisolithus	tinctorius	AF 374712	France	Pinus
Pisolithus	tinctorius	AF 143234	France	n/a
Pisolithus	tinctorius	AF 374683	India	Eucalyptus*
Pisolithus	tinctorius	DQ 679804	Italy	n/a
Pisolithus	tinctorius	AF 374629	Japan	Pinus/Betula
Pisolithus	tinctorius	AF 003915	Kenya	Afzelia
Pisolithus	tinctorius	AF 228653	Kenya	Afzelia
Pisolithus	tinctorius	AF 003914	Kenya	Eucalyptus*
Pisolithus	tinctorius	AF 003916	Kenya	Pinus*
Pisolithus	tinctorius	AF 228647	Kenya	Pinus*
Pisolithus	tinctorius	AF 374638	Malaysia	Acacia
Pisolithus	tinctorius	AY 739178	Mexico	n/a
Pisolithus	tinctorius	AF 374633	Nicaragua	Pinus
Pisolithus	tinctorius	AF 374636	Portugal	Eucalyptus*
Pisolithus	tinctorius	AF 374677	Portugal	Eucalyptus*
Pisolithus	tinctorius	AF 374695	Portugal	Eucalyptus*
Pisolithus	tinctorius	AF 374626	Portugal	Pinus
Pisolithus	tinctorius	AF 374630	Portugal	Pinus/Quercus
Pisolithus	tinctorius	AF 374622	Senegal	Acacia
Pisolithus	tinctorius	AF 374623	Senegal	Acacia
Pisolithus	tinctorius	AF 374685	Senegal	Eucalyptus*
Pisolithus	tinctorius	AF 374686	Senegal	Eucalyptus*

Kentaro Hosaka

Table 2. -(Continued)-

Genus	Species	Accession No.	Locality	Presumable ECM hosts
Pisolithus	tinctorius	AF 374687	Senegal	Eucalyptus*
Pisolithus	tinctorius	AF 374688	Senegal	Eucalvntus*
Pisolithus	tinctorius	AF 374689	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	AF 374690	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	AF 374691	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	AF 374692	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	ΔF 374692	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	ΔF 374694	Senegal	Eucalyptus Eucalyptus*
Pisolithus	tinctorius	AE 374697	South Africa	Eucalyptus Eucalyptus*
Disolithus	tinctorius	AF 274627	South Africa	Dimus*
Pisolithus	tinctorius	AF 374627	South Africa	Pinus*
Pisolithus	tinctorius	AE 228641	Spain	Cistus
Pisolithus	tinctorius	AF 228642	Spain	Cistus
Pisolithus	tinctorius	AF 228643	Spain	Cistus
Disolithus	tinctorius	AF 228045	Spain	Cistus
Disolithus	tinctorius	AF 228044 AF 228648	Spain	Dimus
F ISOIIINUS Disclithus	tinctorius	AF 220040	Spain	r inus Dimus
r isoliinus Dia a littaa	tinctorius	AF 228032	Spain	Pinus Dinus/Ourman
Pisoliinus Dia alithua	tinctorius	AF 228030	Spain	Pinus/Quercus
Pisoliinus Dia alithua	tinctorius	AF 228049	Spain	Quercus
r isoliinus Dia a littaa	tinctorius	AF 220031	Spain	Quercus
Pisolithus	tinctorius	AF 228045	Spain	Quercus/Cistus
Pisolithus	tinctorius	AF 228040	Spain Theilend	Quercus/Cistus
Pisolithus	tinctorius	AF 3/4031	I nailand	Pinus B: (O
Pisolithus	tinctorius	AF 3/4625	Inailand	Pinus/Quercus
Pisolithus	tinctorius	AF 143233	USA	Pinus
Pisolithus	tinctorius	AF 3/4032	USA	Pinus
Pisolithus	tinctorius	AF 3/4634	USA	Pinus
Pisolithus	tinctorius	AF 374635	USA	Pinus
Pisolithus	tinctorius	AF 3/4/09	USA	Pinus
Pisolithus	tinctorius	AF 140547	n/a	Eucalyptus
Pisolithus	tinctorius	AF 228654	n/a	Eucalyptus
Pisolithus	tinctorius	AF 228655	n/a	Eucalyptus
Pisolithus	tinctorius	AF 228656	n/a	Eucalyptus
Pisolithus	tinctorius	AF 228657	n/a	Eucalyptus
Pisolithus	tinctorius	EF 529622	n/a	n/a
Pisolithus	tinctorius	EU 559631	n/a	n/a
Pisolithus	tinctorius	EU /18114	n/a	n/a
Pisolithus	sp.	AF 004/33	Australia	Eucalyptus
Pisolithus	sp.	AF 004/34	Australia	Eucalyptus
Pisolithus	sp.	AF 270771	Australia	Eucalyptus
Pisolithus	sp.	AF 270772	Australia	Eucalyptus
Pisolithus	sp.	AF 270773	Australia	Eucalyptus
Pisolithus	sp.	AF 270774	Australia	Eucalyptus
Pisolithus	sp.	AF 270778	Australia	Eucalyptus
Pisolithus	sp.	AF 270779	Australia	Eucalyptus
Pisolithus	sp.	AF 270780	Australia	Eucalyptus
Pisolithus	sp.	AF 270781	Australia	Eucalyptus
Pisolithus	sp.	AF 270782	Australia	Eucalyptus
Pisolithus	sp.	AF 270783	Australia	Eucalyptus
Pisolithus	sp.	AF 270784	Australia	Eucalyptus
Pisolithus	sp.	AF 270785	Australia	Eucalyptus
Pisolithus	sp.	AF 270786	Australia	Eucalyptus
Pisolithus	sp.	AF 270787	Australia	Eucalyptus
Pisolithus	sp.	AF 440001	Australia	n/a
Pisolithus	sp.	AF 440865	Australia	n/a
Pisolithus	sp.	AY 179746	Australia	n/a
Pisolithus	sp.	AY 179747	Australia	n/a
Pisolithus	sp.	AF 440000	China	n/a

Table 2	(Continued)-
---------	--------------

Genus	Species	Accession No.	Locality	Presumable ECM hosts
Pisolithus	sp.	AF 416589	India	Eucalyptus*
Pisolithus	sp.	AF 270777	Indonesia	n/a
Pisolithus	sp.	AB 106875	Japan	Pinus
Pisolithus	sp.	AY 318747	New Zealand	Kunzea
Pisolithus	sp.	AY 318748	New Zealand	Kunzea
Pisolithus	sp.	AF 270776	Phillippines	n/a
Pisolithus	sp.	AB 099922	Thailand	Dipterocarpus
Pisolithus	sp.	AB 099908	Thailand	Eucalvptus*
Pisolithus	sp.	AB 099909	Thailand	Eucalvntus*
Pisolithus	sp.	AB 099910	Thailand	Eucalvntus*
Pisolithus	sp.	AB 099911	Thailand	Eucalvntus*
Pisolithus	sp	AB 099912	Thailand	Eucalyntus*
Pisolithus	sp.	AB 099913	Thailand	Eucalyptus*
Pisolithus	sp.	AB 099914	Thailand	Eucalyptus*
Pisolithus	sp.	AB 099915	Thailand	Fucalyptus*
Pisolithus	sp. sn	AB 099916	Thailand	Fucalyptus Fucalyptus*
Pisolithus	sp. sn	AB 099917	Thailand	Fucalyptus Fucalyptus*
Pisolithus	sp.	AB 000018	Thailand	Eucalyptus Eucalyptus*
Disolithus	sp.	AD 000842	Thailand	Dimus
Disolithus	sp.	AD 099843	Thailand	1 inus Dimus
Digolithug	sp.	AD 099844 AD 000845	Thailand	1 thus Dimus
F isoliithus Digolithug	sp.	AD 099845	Thailand	F IMUS Dimus
F isoliithus Digolithug	sp.	AD 099840	Thailand	F IMUS Dimus
Pisoliinus D: 1:4	sp.	AB 099847	Thailand	Pinus
Pisolilnus	sp.	AB 099902	Thailand	Pinus
Pisoliinus	sp.	AB 099903	Thailand	Pinus
Pisolithus	sp.	AB 099904	Inaliand	Pinus
Pisolithus	sp.	AB 099905	Thailand	Pinus
Pisolithus	sp.	AB 099906	Thailand	Pinus
Pisolithus	sp.	AB 099907	Thailand	Pinus
Pisolithus	sp.	AB 099919	Thailand	Shorea
Pisolithus	sp.	AB 099920	Thailand	Shorea
Pisolithus	sp.	AB 099921	Thailand	Shorea
Pisolithus	sp.	AJ 629887	Thailand	n/a
Pisolithus	sp.	AF 270775	USA	n/a
Pisolithus	sp.	AF 142991	n/a	Eucalyptus
Pisolithus	sp.	AF 440002	n/a	Eucalyptus
Pisolithus	sp.	AB 106874	n/a	Pinus
Pisolithus	sp.	EF 192104	n/a	n/a
Pisolithus	sp.	EF 192105	n/a	n/a
Pisolithus	sp.	EF 192106	n/a	n/a
Pisolithus	sp.	EF 192107	n/a	n/a
Pisolithus	sp.	EF 192108	n/a	n/a
Pisolithus	sp.	EF 192109	n/a	n/a
Pisolithus	sp.	EF 192110	n/a	n/a
Pisolithus	sp.	EU 718113	n/a	n/a
Pisolithus	sp.	FJ 710201	n/a	n/a
Pisolithus	sp.	FJ 710203	n/a	n/a
[OUTGROUP]				
Boletinellus	exiguus	AJ 419185	Brazil	n/a
Boletinellus	merulioides	DQ 200922	n/a	n/a
Boletinellus	rompelii	AJ 419192	Brazil	n/a
Calostoma	berkeleyi	FJ 710189	n/a	n/a
Calostoma	cinnabarinum	AY 854064	n/a	n/a
Calostoma	fuscum	FJ 710190	n/a	n/a
Calostoma	insignis	EU 718092	n/a	n/a
Calostoma	japonicum	FJ 710191	n/a	n/a
Calostoma	lutescens	FJ 710192	n/a	n/a

Genus	Species	Accession No.	Locality	Presumable ECM hosts
Calostoma	miniata	FJ 710194	n/a	n/a
Calostoma	orirubrum	FJ 710196	n/a	n/a
Calostoma	ravenelii	FJ 710197	n/a	n/a
Calostoma	retisporum	FJ 807565	Malaysia	n/a
Calostoma	rodwayi	FJ 710198	n/a	n/a
Calostoma	sarasini	FJ 710199	n/a	n/a
Paxillus	involutusp	AF 167700	n/a	Fagus
Scleroderma	areolatum	EU 819518	n/a	Fagaceae
Scleroderma	bovista	EU 819517	n/a	Castanea
Scleroderma	сера	EU 819439	n/a	Castanea
Scleroderma	citrinum	FJ 824090	n/a	Castanea
Scleroderma	dictvosporum	FJ 840449	Burkina Faso	legume
Scleroderma	laeve	EU 718120	n/a	n/a
Scleroderma	macalpinei	EU 718122	n/a	n/a
Scleroderma	meridionale	EU 718121	n/a	n/a
Scleroderma	michiganense	EU 819441	n/a	Castanea
Scleroderma	polvrhizum	EU 718123	n/a	n/a
Scleroderma	sinnamariense	AB 453030	Thailand	Dinterocarnus
Scleroderma	verrucosum	FJ 840461	n/a	legume
Scleroderma	xanthochroum	EU 718126	n/a	n/a
Suillus	luteus	L 54110	n/a	n/a

Table 2. -(Continued)-

n/a=information not available from GenBank database.

*=ectomycorrhizal plants introduced from other continents.

closely related with *Scleroderma*, *Calostoma*, and *Boletinellus* (Binder and Hibbett, 2006), the majority of outgroup taxa were chosen from these genera. Additional outgroup taxa were selected from more distantly related groups within Boletales: *Suillus* in the suborder Suillineae, and *Paxillus* from the suborder Paxillineae.

The vast majority of sequences were retrieved from the studies by Martin et al. (2002), Moyersoen et al. (2003), and Kanchanaprayudh et al. (2003a), but large numbers of unpublished sequences were also included. Specimens collected in New Caledonia by the authors were deposited at the fungal herbarium of the National Museum of Nature and Science, Tsukuba, Japan (TNS). additional specimens of the genus Four Pisolithus from Japan housed at the TNS were also used for this study. Presumable ectomycorrhizal hosts were determined based on field observation by the authors, specimen labels, or the GenBank database. If such information was unavailable, ectomycorrhizal hosts were treated as unknown.

DNA was extracted from glebal tissue of fresh

or dried fruiting bodies. The protocol generally follows that of Doyle and Doyle (1987) but with the following modifications. For fresh materials, immature glebal tissue was soaked in DMSO buffer (Seutin *et al.*, 1991) with an addition of 100 mM Tris-HCl (pH 8.0) and 0.1 M sodium sulfate (Na₂SO₃) under 4°C until extraction. For dried materials, immature glebal tissue was soaked overnight in modified DMSO buffer under room temperature.

Soaked tissue samples were then ground in liquid nitrogen using mortar and pestle. After grinding, samples were immediately transferred to 1.5 mL tubes with 1,000 mL of 2X CTAB buffer (Doyle and Doyle, 1987) with an addition of $0.1 \text{ M} \text{ Na}_2 \text{SO}_3$. Samples were incubated at 65°C for 1 hour, and centrifuged at 12,000 rpm for 5 min. Only the aqueous phase was transferred to a new tube, and precipitated tissue debris was discarded. The equal volume of the mixture of chloroform : isoamylalcohol (24 : 1) was added to the buffer, mixed vigorously for two minutes, and centrifuged at 12,000 rpm for 15 min. The aqueous phase was pipetted out and transferred to a new tube. This step of using chloroform was conducted only once.

After transferring ca. 300 mL of the aqueous phase, 1,000 mL of 6 M sodium idodine buffer (6 M NaI, 50 mM Tris-HCl (pH 7.4), 10 mM EDTA, 0.1 M Na₂SO₃) was added and mixed gently for 1 minute. Silica mixture was prepared following the protocol of Rogstad (2003), and 25 mL of the mixture was added to the samples. Samples were incubated at 55°C for 1 hour, and centrifuged at full speed for ca. 10 seconds. The supernatant was discarded and 750 mL of washing buffer (10 mL Tris-HCl (pH 7.4), 1 mM EDTA, 100 mM NaCl, 50% EtOH) was added, mixed briefly, and centrifuged at full speed for ca. 5 seconds. This washing step was repeated twice. After finishing the washing step, samples were centrifuged one more time at full speed for 10 seconds, the remaining washing buffer was pipetted out, and precipitated silica was dried at room temperature for 30 min to 1 hour. Final elution was performed by adding 100 mL of ultra pure water, mixed briefly, and incubated at 65°C for 15 min. Samples were centrifuged at 12,000 rpm for 1 min, and supernatant layer was transferred to a new tube and stored at $-20^{\circ}C$ until PCR was performed.

DNA sequence data were obtained from the internal transcribed spacer regions (ITS) of the nuclear ribosomal DNA. The primer combination of ITS5 and ITS4 (White et al., 1990) was used. PCR reactions were carried out using 20 µl reaction volumes each containing: $1 \mu l$ genomic DNA, $1 \mu l$ dNTP (4 mM), $1 \mu l$ of each primer $(8 \,\mu\text{M})$, 0.5 units of tag polymerase (TAKARA, Japan), $2 \mu l$ MgCl₂ (25 mM), and $2 \mu l$ Bovine Serum Albumin (10 mg/ml). Cycling parameters were 1 cycle of 94°C for 3 min, 30 cycles of 94°C for 1 min, 51°C for 30 sec and 72°C for 1 min, with a final extension at 72°C for 15 min. PCR products were electrophoresed in 1% agarose gels stained with ethidium bromide and visualized under UV light. PCR products were then purified using the ExoSAP-IT (Affymetrix Inc., USA) and directly sequenced using the Big Dye Terminator Cycle Sequencing Kit (Applied

Biosystems Inc., Norwalk, CT, USA), following the manufacturer's instructions. The primers used for cycle sequencing are ITS1 and ITS4 (White *et al.*, 1990).

Phylogenetic analyses

DNA sequences were initially aligned using Muscle v.3.6 (Edgar, 2004a, 2004b), followed by manual alignment in the data editor of BioEdit ver. 7.0.1 (Hall, 1999). Ambiguously aligned regions were excluded from the analyses. The dataset was then analyzed by maximum parsimony (MP) and neighbor-joining (NJ) analyses. MP analyses were conducted under the equally weighted parsimony criterion using PAUP* version 4.0b10 (Swofford, 2002). Due to computational intensity and dense taxon sampling of terminal clades, a two-step search approach was conducted. In the first step, the heuristic search option (with TBR, no Multrees) and 1,000 replicates of random addition sequence were performed, keeping only up to two shortest trees per replicate. In the second step, all of the shortest trees from the first step were used as starting trees for heuristic search option (with TBR and Multrees on) with MAXTREES set to 10,000. Support for the individual nodes was tested with bootstrap (BS) analysis under the equally-weighted parsimony criterion. BS analysis was based on 1,000 BS replicates using the heuristic search option (TBR and Multrees options off), with ten random addition sequences. NJ analysis was conducted with the Kimura-2-parameter model, with a transition/transversion ratio set to 2, and a gamma shape set to 0.5. Support for individual nodes was tested by BS analysis based on 1,000 BS replicates under the same settings.

Results and Discussion

PCR amplification and sequencing

Most DNA samples produced a clear, single band of the ITS region (ca. 650 bp). Direct sequencing of all PCR products resulted in clear peaks without ambiguous base calling, so cloning was not necessary for sequencing

Fig. 1. Basidiomata of *Pisolithus* spp. A. *P.* sp. from New Caledonia (KH-NC09 -002). B. *P.* sp. from New Caledonia (KH-NC09-026). Note presence of stalk and thick rhizomorphic base with bright yellow color. C. Longitudinal section of basidiomata of *P* sp. from New Caledonia (KH-NC09-026). D. *P.* sp. from New Caledonia (KH-NC09-059). Note brownish basidiomata with rhizomorphs without conspicuous yellow tint. Bars=1 cm.

Fig. 2. Typical habitat of *Pisolithus* spp. in New Caledonia. Note bare soil with scattered woody plants. Photo taken in April, 2009 near town of Goro, Southern Province, New Caledonia.

Pisolithus from New Caledonia and Japan used for this study. We have also attempted to amplify ca. 50 additional specimens of *Pisolithus* housed at the TNS herbarium, which have been collected from various locations in New Caledonia and Japan. However, the PCR reactions using the same universal primers (ITS5 and ITS4) failed. Because most of these specimens were collected more than 30 years ago, this failure may be due to degradation of DNA molecules. This needs to be solved by using internal primers to amplify shorter fragments, or by designing taxon specific primers for *Pisolithus*.

Phylogenetic analyses

The aligned dataset consists of 1,408 characters, of which 827 characters were only ambiguously aligned and therefore excluded from the analyses. In addition, 547 characters were parsimony uninformative so the remaining 386 characters were considered parsimony informative and used for the MP analyses.

After the first step of a two-step search approach (see Methods), only two trees with tree length 4,148 were recovered. Those trees were used as starting trees for the second step. The second step quickly recovered the trees with equal tree lengths (4,148) and reached the maximum numbers of trees (10,000). The run was aborted after the number of trees reached 10,000. All trees were saved and the strict consensus was calculated using PAUP*.

The most parsimonious trees had 4,148 steps with a CI of 0.2244, RI of 0.7714, and RC of 0.1731. Although a large number of trees (10,000) were recovered, many nodes were not collapsed when strict consensus was calculated. This might indicate that the large number of trees generated by parsimony analyses was not necessarily due to an insufficient resolution power of the ITS dataset, but that a dense taxon sampling with closely related (or often identical) ITS sequences may be responsible. Nonetheless, bootstrap analyses revealed that almost no deep nodes had significant support. Furthermore, the alignment file consisted of many ambiguously aligned regions due to difficulty in assessing positional homology. Aligning the ITS regions across all taxa used in this study is an obvious challenge, and therefore more slowly evolving genes with sufficient resolution power, e.g., *atp6* (Kretzer and Bruns, 1999; Hosaka *et al.*, 2006, 2008; Hosaka and Castellano, 2008) are desirable for further analyses.

Both MP and NJ analyses produced similar topology and largely recovered the "Lineage A" and "Lineage B" designated by Martin *et al.* (2002) (Fig. 3). All sequences of New Caledonian taxa belong to the Group 1 (Fig. 3), which roughly corresponds with the Lineage B sensu Martin *et al.* (2002). Based on a global tree of the genus, it is apparent that taxa from New Caledonia (shaded by black in Fig. 3) do not form a monophyletic group, suggesting multiple origins of New Caledonian taxa. Taxa from Japan did not form a monophyletic group, either (shaded by gray in Fig. 3).

Taxonomic implication

This study, along with previous ones (Martin et al., 2002; Moyersoen et al., 2003; Kanchanaprayudh et al., 2003a), revealed serious taxonomic problems for the genus Pisolithus. Although it is possible that species names used for GenBank sequences and herbarium specimens were simply misidentification, several "species" appeared in multiple positions in phylogenetic trees. Some examples include P. tinctorius and P. albus, which appeared many times in very distantly related clades. Applying the name "P. tinctorius" is particularly problematic because in many countries, it is virtually the only name used for this genus. Because mycologists have long been aware that the genus has wide variation in macro/microscopic characters, cultural property, biochemical property, and ecology (Burgess et al., 1995; Grand, 1976; Grenville et al., 1985; Kope and Fortin, 1990; Marx, 1977), new phylogenetic information should be integrated into the modern taxonomy of Pisolithus.

Even within small countries, such as New Caledonia and Japan, significant diversity of

Fig. 3. Phylogenetic tree of *Pisolithus* and related taxa derived from neighbor-joining analysis based on the ITS dataset of 317 taxa. Taxa from New Caledonia are shaded by black, and taxa from Japan are shaded by gray.

Pisolithus species exists. Although we do not have significant statistical support for many nodes in phylogenetic trees, it is apparent that both New Caledonia and Japan have several phylogenetically distinct species (Figs. 3, 4 and 5). We have not conducted detailed morphological examinations for New Caledonian and Japanese specimens used in this study, but such a study will surely confirm distinct features of species in each countries.

Biogeographical implication: New Caledonia

Although not many species of *Pisolithus* is known from New Caledonia, phylogenetic analyses clearly demonstrated a high diversity of genus exists in this area.

One of the intriguing questions regarding the New Caledonian taxa is the origin of these taxa from the other continents. Geological evidence suggests that New Caledonia was once a part of supercontinent Gondwana, but it was separated with New Zealand from the rest of Gondwana ca. 80 million years ago (McLoughlin, 2001). Whether it was once completely submerged under ocean or significant area of land mass has always existed as part of an ancient continent "Zealandia" is still controversial (Trewick *et al.*, 2007), but the fact that New Caledonia shares geological history with other parts of Gondwana, e.g., present day Australia, New Zealand, and South America (McLoughlin, 2001), makes it attractive system to investigate potential role of vicariance versus dispersal.

As expected, taxa from New Caledonia were shown to be closely related to taxa from Australia (Figs. 3 and 4), which also has a Gondwanan origin (McLoughlin, 2001). Geographically, however, New Caledonia shared its most

Fig. 4. Some representative clades of *Pisolithus* containing taxa from New Caledonia (A–E). Each clade (A–E) was directly retrieved from NJ trees in Fig. 3. Taxon names followed by GenBank accession numbers, geographical origin of the specimen (if known), and presumable ectomycorrhizal hosts (if known). Asterisk (*) indicates that ectomycorrhizal host plants are introduced from other continents.

recent connection with New Zealand (McLoughlin, 2001; Trewick et al., 2007). Therefore, for vicariance to be a major factor for biogeography of Pisolithus, there should be an indication of a sister relationship between New Caledonia and New Zealand taxa. Such a relationship was observed in some parts of the tree (Figs. 4B and C), but it is still premature to draw any conclusions of vicariance origin for these taxa. It is noteworthy, however, that Pisolithus spp. in New Zealand were thought to have been dispersed from Australia via west-drift wind (Moyersoen et al., 2003). Such a long-distance dispersal of spores by west drift wind throughout the Southern Hemisphere was documented for plant pathogenic fungi (Watson and de Sousa, 1983). If this is correct, long-distance dispersal, including transoceanic dispersal, of macrofungi should happen much more frequently than we currently recognize. A recent trend in biogeographical studies is to re-evaluate the importance of long-distance dispersal (de Queiroz, 2005), and frequent longdistance dispersal was postulated for many

organisms, including some macrofungi (Knapp *et al.*, 2005; Hosaka *et al.*, 2008; Matheny *et al.*, 2009).

Based on field observations of the fruit-body habitat, ectomycorrhizal hosts of New Caledonian fungi could not be identified. It was clear that no *Nothofagus*, which is an important ectomycorrhizal genus in the Southern Hemisphere, was present near collecting sites, but potential ectomycorrhizal partners included Myrtaceae and Leguminosae. However, detailed examination of phylogenetic trees indicates that all taxa from New Caledonia are closely related to species associating with Myrtaceae (mostly *Eucalyptus*) (Fig. 3). Therefore it appears likely that *Pisolithus* in New Caledonia may also be associated with myrtaceous plants.

Biogeographical implication: Japan

Taxa from Japan did not form a monophyletic group (Fig. 3). They are closely related with species from other Asian countries, including China and Thailand (Fig. 5). The fact that they

_
_

Fig. 5. Some representative clades of *Pisolithus* containing taxa from Japan (A, B). Each clade (A, B) was directly retrieved from NJ trees in Fig. 3. Taxon names followed by GenBank accession numbers, geographical origin of the specimen (if known), and presumable ectomycorrhizal hosts (if known). Asterisk (*) indicates that ectomycorrhizal host plants are introduced from other continents.

did not form a clade with taxa from more distantly located continents, such as Australia, indicates that although long-distance dispersal could be a major factor of biogeography of this genus, such dispersal is more restricted within smaller regions, e.g., Asia.

There seems to be some trends in phylogeny and ectomycorrhizal host association. For example, pine-associated species from Japan (such as AB106875 and TNSF2158) are closely related with pine-associated species from other countries. However, this fungus-plant association appears to be less strict in the Northern Hemisphere. Taxa from Thailand can be associated either with Pinaceae or Dipterocarpaceae, and they are sometimes closely related, if not identical (Fig. 5A). Even more striking is that some taxa collected in China under introduced Eucalyptus are closely related to other Asian taxa associated with native plants. This may indicate that those eucalypt-associated taxa are not introduced from Australia, where Eucalyptus originally exists, but at some point switched their hosts from native plants to Eucalyptus. This kind of dramatic host shift has rarely been documented, and warrants further investigation.

Acknowledgements

I thank David Paulaud, Julika Bourget, and the park rangers of Les Bois du Sud for facilitating my fieldwork in New Caledonia. Thanks also go to Yumiko Hirayama for facilitating molecular work, Takako Hosaka, Tsukasa Maejima, Yoshiaki Muramatsu, Kazuo Nisibori, Aya Nomura, and Haruo Sakamoto for assisting DNA extraction and curatorial work. I also thank Ms. Hannah Reynolds for refining my English text. This study was financed in part by a research grant (2009–2011) of the Institute of Fermentation, Osaka, Japan.

References

Binder, M. and Hibbett, D. S. 2006. Molecular systematic and biological diversification of Boletales. *Mycologia* **98**: 971–981.

- Burgess, T., Malajczuk, N. and Dell, B. 1995. Variation in *Pisolithus* based on basidiome and basidiospore morphology, culture characteristics and analysis of polypeptides using 1D SDS-PAGE. *Mycological Research* **99**: 1–13.
- Coetzee, M. P., Wingfield, B. D., Bloomer, P., Ridley, G. S. and Wingfield, M. J. 2003. Molecular identification and phylogeny of *Armillaria* isolates from South America and Indo-Malaysia. *Mycologia* **95**: 285–293.
- Coetzee, M. P., Wingfield, B. D., Bloomer, P., Ridley, G. S., Kile, G. A. and Wingfield, M. J. 2001. Phylogenetic relationships of Australian and New Zealand *Armillaria* species. *Mycologia* **93**: 887–896.
- Cunningham, G. H. 1944. The gasteromycetes of Australia and New Zealand. pp. 236. John McIndoe, Dunedin.
- de Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. *Trends in Ecology and Evolution* **20**: 68–73.
- Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phy*tochemistry Bulletin 19: 11–15.
- Edgar, R. C. 2004a. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* **32**: 1792–1797.
- Edgar, R. C. 2004b. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5: 113.
- Grand, L. F. 1976. Distribution, plant associates and variation in basidiocarps of *Pisolithus tinctorius* in the United States. *Mycologia* 68: 672–678.
- Grenville, D. J., Peterson, R. L. and Piché, Y. 1985. The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi. I. *Pisolithus tinctorius*. *Canadian Journal of Botany* 63: 1402–1411.
- Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.
- Halling, R. E. 2001. Ectomycorrhizae: co-evolution, significance, and biogeography. *Annals of the Missouri Botanical Garden* 88: 5–13.
- Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L. and Hedges, S. B. 2001. Molecular evidence for the early colonization of land by fungi and plants. *Science* **293**: 1129–1133.
- Hedges, S. B., Blair, J. E., Venturi, M. L. and Shoe, J. L. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. *BMC Evolutionary Biology* **4**: 2–10.
- Hibbett, D. S. 2001. Shiitake mushrooms and molecular clocks: historical biogeography of *Lentinula*. *Journal of Biogeography* 28: 231–241.

- Hibbett, D. S. and Binder, M. 2002. Evolution of complex fruiting-body morphologies in homobasidiomycetes. *Proceedings of the Royal Society of London, Series B* 269: 1963–1969.
- Hibbett, D. S. and Matheny, P. B. 2009. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. *BMC Biology* 7: 13–25.
- Hibbett, D. S. and Thorn, R. G. 2001. Basidiomycota: Homobasidiomycetes. *In*: The Mycota, volume 7. Systematics and evolution. McLaughlin, D. J., McLaughlin, E. G. and Lemke, P. A. (eds.), pp. 121–168. Springer, Berlin.
- Hosaka, K., Bates, S. T., Beever, R. E., Castellano, M. A., Colgan, W., Dominguez, L. S., Geml, J., Giachini, A. J., Kenney, S. R., Nouhra, E. R., Simpson, N. B., Spatafora, J. W. and Trappe, J. M. 2006. Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass *Phallomycetidae* and two new orders. *Mycologia* **98**: 949–959.
- Hosaka, K. and Castellano, M. A. 2008. Molecular phylogenetics of Geastrales with special emphasis on the position of *Sclerogaster*. *Bulletin of the National Museum of Nature and Science, Series B* 34: 161–173.
- Hosaka, K., Castellano, M. A. and Spatafora, J. W. 2008. Biogeography of the *Hysterangiales (Phallomycetidae, Basidiomycota)*. *Mycological Research* **112**: 448–462.
- James, T. Y., Moncalvo, J. M., Li, S. and Vilgalys, R. 2001. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom *Schizophyllum commune*. *Genetics* 157: 149–161.
- James, T. Y., Porter, D., Hamrick, J. L. and Vilgalys, R. 1999. Evidence for limited intercontinental gene flow in the cosmopolitan mushroom, *Schizophyllum commune. Evolution* 53: 1665–1677.
- Jülich, W. 1981. Higher taxa of basidiomycetes. *Bibliothe*ca Mycologica 85: 1–485.
- Kanchanaprayudh, J., Zhou, Z., Yomyart, S., Sihanonth, P. and Hogetsu, T. 2003a. Molecular phylogeny of ectomycorrhizal *Pisolithus* fungi associated with pine, dipterocarp, and eucalyptus trees in Thailand. *Mycoscience* 44: 287–294.
- Kanchanaprayudh, J., Zhou, Z., Yomyart, S., Sihanonth, P., Hogetsu, T. and Watling, R. 2003b. A new species, *Pisolithus abditus*, an ectomycorrhizal fungus associated with dipterocarps in Thailand. *Mycotaxon* 88: 463– 467.
- Kirk, P. M., Cannon, P. F., Minter, D. W. and Stalpers, J. A. 2008. Ainsworth and Bisby's Dictionary of the Fungi, 10th edition. 771 pp. CABI Publishing, Wallingford.
- Knapp, M., Stöckler, K., Havell, D., Delsuc, F., Sebastiani, F. and Lockhart, P. J. 2005. Relaxed molecular

clock provides evidence for long-distance dispersal of *Nothofagus* (southern beech). *PLoS Biology* **3**: 38–43.

- Kope, H. H. and Fortin, J. A. 1990. Germination and comparative morphology of basidiospores of *Pisolithus arhizus*. *Mycologia* 82: 350–357.
- Kretzer, A. M. and Bruns, T. D. 1999. Use of *atp6* in fungal phylogenetics: an example from the Boletales. *Molecular Phylogenetics and Evolution* **13**: 483–492.
- Martin, F., Díez, J., Dell, B. and Delaruelle, C. 2002. Phylogeography of the ectomycorrhizal *Pisolithus* species as inferred from nuclear ribosomal DNA ITS sequences. *New Phytologist* 153: 345–357.
- Marx, D. H. 1977. Tree host range and world distribution of the ectomycorrhizal fungus *Pisolithus tinctorius*. *Canadian Journal of Microbiology* 23: 217–223.
- Matheny, P. B., Aime, M. C., Bougher, N. L., Buyck, B., Desjardin, D. E., Horak, E., Kropp, B. R., Lodge, D. J., Soytong, K., Trappe, J. M. and Hibbett, D. S. 2009. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. *Journal of Biogeography* 36: 577–592.
- Matheny, P. B., Wang, Z., Binder, M., Curtis, J. M., Lim, Y. W., Nilsson, R. H., Hughes, K. W., Hofstetter, V., Ammirati, J. F., Schoch, C., Langer, E., Langer, G., McLaughlin, D. J., Wilson, A. W., Froslev, T., Ge, Z.
 W., Kerrigan, R. W., Kerrigan, R., Slot, J., Yang, Z. L., Baroni, T. J., Fischer, M., Hosaka, K., Matsuura, K., Seidl, M., Vauras, J. and Hibbett, D. S. 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (*Basidiomycota*, Fungi). *Molecular Phylogenetics and Evolution* 43: 430–451.
- McLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. *Australian Journal of Botany* **49**: 271–300.
- Moyersoen, B., Beever, R. E. and Martin, F. 2003. Genetic diversity of *Pisolithus* in New Zealand indicates multiple long-distance dispersal from Australia. *New Phytol*ogist 160: 569–579.
- Reddy, M. S., Singla, S., Natarajan, K. and Senthilarasu, G. 2005. *Pisolithus indicus*, a new species of ectomycorrhizal fungus associated with dipterocarps in India. *Mycologia* 97: 838–843.
- Rogstad, S. H. 2003. Plant DNA extraction using silica. *Plant Molecular Biology Reporter* **21**: 463a–463g.
- Sanmartín, I. and Ronquist, F. 2004. Southern Hemisphere biogeography inferred from event-based models: plant versus animal patterns. *Systematic Biology* **53**: 216–243.
- Seutin, G., White, B. N. and Boag, P. T. 1991. Preservation of avian blood and tissue samples for DNA analyses. *Canadian Journal of Zoology* **69**: 82–90.
- Swenson, U., Backlund, A., McLoughlin, S. and Hill, R. S. 2001. Nothofagus biogeography revisited with spe-

cial emphasis on the enigmatic distribution of subgenus *Brassospora* in New Caledonia. *Cladistics* **17**: 28–47.

- Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sunderland, Massachusetts: Sinauer Associates.
- Taylor, J. W. and Berbee, M. L. 2006. Dating divergences in the fungal tree of life: review and new analyses. *Mycologia* 98: 838–849.
- Thomas, S. R., Dunstan, W. A., Dell, B., Trappe, J. M. and Malajczuk, N. 2003. *Pisolithus hypogaeus* sp. nov.: a hypogeous representative of the genus *Pisolithus* from Western Australia. *Mycotaxon* 87: 405–410.
- Trewick, S. A., Paterson, A. M. and Campbell, H. J. 2007. Hello New Zealand. *Journal of Biogeography* 34: 1–6.
- Watling, R. 2006. The sclerodermatoid fungi. Mycoscience 47: 18–24.

- Watling, R., Taylor, A., See, L. S., Sims, K. and Alexander, I. 1995. A rainforest *Pisolithus*; its taxonomy and ecology. *Nova Hedwigia* 61: 417–429.
- Watson, I. A. and de Sousa C. N. A. 1983. Long distance transport of spores of *Puccinia graminis tritici* in the southern Hemisphere. *Proceedings of the Linnean Society of New South Wales* **106**: 311–321.
- White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: PCR protocols. Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds.). pp. 315–322. Academic Press, New York.
- Zervakis, G. I., Moncalvo, J. M. and Vilgalys, R. 2004. Molecular phylogeny, biogeography and speciation of the mushroom species *Pleurotus cystidiosus* and allied taxa. *Microbiology* 150: 715–726.